
ON ALGORITHMS FOR GENERATING COMPUTATIONALLY
SIMPLE PIECEWISE LINEAR CLASSIFIERS

by

HANS CHRISTIAN PALM

D~vor

i - 'u "

L, , rib~t i n

NDREIPUBL-89/1001 ! I-t:;,Codas

ISSN 0800-4412 , .:dorDi

FORSVARETS FORSKNINGSINSTITUTT
NORWEGIAN DEFENCE "'ESEARCH ESTABLISHMENT

P 0 Box 25 - N-2007 Kje'!er, Norway

ON ALGORITHMS FOR GENERATING COMPUTATIONALLY

SIMPLE PIECEWISE LINEAR CLASSIFIERS

by

HANS CHRISTIAN PALM

:-or

NDRE/PUBL-89/1001 , ". s

ISSN 0800-4412 ',/or

FORSVARETS FORSKNINGSINSTITUTT
NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT

P 0 Box 25 - N-2007 KieIer, Norway

May 1989

NORWNEGiAN QEFEN1CE RESEARCH ESTABLISHMENIT (N ORE) UCASF~
PORSVARETS FORSKNINGSINSTITUT-r (FFI) __________________________

SJlvCL-ASSIP CA710N OF T;-iIS PAGE
POST OFFICE 30X Z5 - ca etr l
.4-2007 KJELLER, NORWAY

REPORT OCUMENTATION* PAGE

11 PUSL/REPORT NU.MBER 21 SEC;R1 7Y CL-ASSIFICATION .3) NUMBER OF
PAGES

NDRE/PUBLS89/ 1001 Unclassified
1a) JOB REFERENCE 2a) OECLASSIFICATIONIOWNGRAOING SCHEDULE 1 20

557-VM/ 130

4) tITLE=

ON ALGORIThtMS FOR GENERATING COMPUTATIONALLY SIMPLE PIECEWISE
LINEAR CLASSIFIERS

4NAMES OF AU 7HOR(SI IN FULL (sumamo ,rnj

PALM Hans Christian

6I OISTRIEU TION ST ATEMEN T

Approved for public release
(offentlig tilgjergelig

71 tNOEX!.G TERMS
N ENGLISH: 1IN NORWEGIAN:

"Pattern recognition) -M~nstergj en kienninq
P2-ecewise linear Stykkevis linemre

SI -discriminant. function dI dis krni n a n t unk s jon er

C) Sucervised learning CI Leder li-ring

"I Cluster analysis d) Klynaeanalvse

SMonte Carlo siznultaion *~Monte Carlo simulering

R 4ESAURUSA~EF=_AENCF;

tpiecewise linear classifiers constitute a group of classifiers
often used in real time pattern recognition. In most cases
they are reliable and sufficiently fast. In this work, new
algorithms for generating piecewise linear classifiers are
developed, which can easily handle multi class problems. Using
only a small number of discriminant functions, they attempt to
create a classifier with low error rate. In brief, the concept

* consists of first splitting the sample space of a given class
into two subsiample spaces. The samples belonging to a given
class which are lying in the same (sub)sample space are said
to belong to the_ same subclass. N4ext, the_ (sub)classes are
separated' using linear classifiers. Then, a new (sub)class is
split and a classifier based on this splitting, is created.

f) OAr-. AUTHCRIZSO BY POSITION

24 May 1989 !?Thoe ~ Chle~ _-Sc Ie n zIs t

7r:S S IE Z'0 _____

UNCLASSIFIED
SECURITY CLASSIFICATION O. THIS PAGE

(-.ne- clara ente~ed)

AaSTRACT (continued)

This process continues until the overall performance is not
improved by further splitting. Our classifiers have been
compared with other relevant classifiers such as Bayes classi-
fier (for known distributions), Bayes classifier with
estimated densities, the nearest neighbour rule as well as
previously developed piecewise linear classifiers. So far
tests have zhown that our algorithms Are working very weil.
They produce fast and reliable classifiers which in some cases
have been found superior to the classifiers used for the
comparision.

AcCOS,!Vo For

INTIS r

By _ _

_Dlst rib.utiton/

Avnh]b qhlV~ Codes

U!)i +,,!/ r -
O -

Dit ii. i on/II

4"!

UNCLASSIFIED

SECURI7Y CLASSIFICATION OF T4IS PAG
-

(.-nem dcla entvrv.0

3

CONTENTS Page

1 INTRODUCTION 5

2 INTRODUCTION TO PATTERN RECOGNITION 7

2.1 Basic concepts 7

2.2 Linear classifiers 9
2.3 Quadratic classifiers 10

2.4 Piecewise linear classifiers 12

3 THE NEW CONCEPT 22

3.1 Finding a suitable (sub)sample space for splitting 23

3.2 How to split a given subsample space 25

3.3 Generation of piecewise linear classifiers 27

3.4 Termination of the algorithm and generation of the

final classifier 28

4 DEVELOPMENT OF THE ALGORITHMS 29

4.1 Determination of a suitable subsample space to split 29

4.1.1 The hillclimbing approach 31

4.1.2 A contribution based splitting 32

4.1.3 Comparison of the two strategies 33
4.2 How to split a given subsamples space 44

4.2.1 Initial splitting procedures 45

4.2.1.1 Splitting based on the scatter matrix 45

4.2.1.2 Splitting based on starting samples 46

4.2.1.2.1 Determination of the starting samples 47

4.2.1.2.2 Splitting of a subclass when the staring samples

are given 48

4.2.1.3 Outlier handling 50

4.2.2 Optimization of the initial splitting 50

4.2.3 Evaluation of the different algorithms 53

4.2.3.1 Results from the initial splitting 57

4.2.3.2 Results from the optimization 61

4

4.3 Generating piecewise linear classifiers 66

4.3.1 The nearest submean classifier 66

4.3.2 Piecewise linear classifier based on the mean

squared error approach 67

4.3.3 Determination of a piecewise linear classifier

using a weighed XSE-approach 69

4.3.4 Generating a piecewise linear classifier from a

set of hyperplanes 72

4.3.4.1 Determining the pairs of subclasses to be separated 73

4.3.4.2 Generating a suitable linear classifier 79

4.3.4.3 Computing the piecewise linear discriminant function 84

4.3.5 Comparison of the performance of the different

classifiers 85

4.4 Determining the final classifier 89

4.4.1 Termination of the splitting 89

4.4.2 Weighing of A, and the number of subclasses 89

4.4.3 Determining a sufficiently good classifier 91

5 EVALUATION OF THE CLASSIFIERS 91

6 SUMMARY AND CONCLUSION 107

References 110

A A ROBUST OUTLIER DETECTOR 113

B THE CONNECTION BETWEEN (/I - t)Y(A2 - 1) AND tr(W) 116

C THE SINGULAR VALUE DECOMPOSITION METHOD USED FOR

DETERMINING THE PIECEWISE LINEAR CLASSIFIER FROM

A SET OF HYPERPLANES 118

5

ON ALGORITHMS FOR GENERATING COMPUTATIONALLY

SIMPLE PIECEWISE LINEAR CLASSIFIERS

1 INTRODUCTION

In many applications one has to assign a given object to one out of several

possible categories (classes). Theories for making such decisions, also called

classification- or pattern recognition-theory, can be dated back to Fisher's

classical work in 1936 [12]. However, it was not until the development of the

electronic computer some 35 years ago that considerable advances were made.

The range of pattern ;ecognition applications is now very broad. A few

examples are:

- Recognition of moving objects (vehicles, human beings etc) in TV-images,

for automatic surveillance.

- Classification of remotely sensed data, i.e. assigning each picture element

of a satellite image to one out of a given set of classes (acres, forests,

roads, etc).

- Medical diagnostics, such as analysis of X-ray images (e.g. detection of

cancer), predicting relapse in pulmonary tuberculosis suffers.

- Waveform classification, e.g. speech recognition, seismic analysis (i.e.

discrimination between earthquakes and nuclear explosions), target

recognition from radar echoes and electroencephalogram analysis.

In statistical pattern recognition each object is being represented by a so called

feature vector. Each component of the vector is a measured value of some

feature of the object. The feature vector is input to the classifier which in turn

assigns the object to one of the classes. Usually discriminant functions are 11sed

for classification purposes. These are a set of confidence functions, one function

for each class. The function value increases with the confidence, and an object

is assigned to the class with the maximum discriminant value.

6

Many of the problems we are concerned with, are to be used in a real time

environment only. In real time applications fast decision making is a must.

Hence only computationally simple discriminant functions such as those with

linear, quadratic or piecewise linear discriminant functions may be used.

The linear classifiers are easy to implement and very fast to compute. Their

error rate may, however, be quite high unless the classes are (almost) linearly

separable. The quadratic classifiers are usually more reliable than the linear

ones. Moreover they are almost as fast (assuming a "small" number of features

to be used). Unfortunately the linear and the quadratic classifiers are not

generally capable of handling data sets with multiple modes and/or concave

data sets satisfactorily. Opposed to those classifiers, the piecewise linear

classifiers manage to give reliable results in such situations as well. However,

traditional piecewise linear discriminant functions may be quite complex and

computationally heavy if classes are partly overlapping in feature space.

In this thesis new algorithms for generating a piecewise linear classifier are

developed. The goal is to create a classifier which combines the linear classifier's

speed with high reliability. Roughly speaking, the strategy is as follows: The

sample space of each class is split into several disjoint subsample spaces. The

samples included in the same subsample space are said to belong to the same

subclass. Linear discriminant functions separating the subclasses are then

constructed and employed to discriminate between the classes. To apply this

method, several difficulties must be solved. Among the most important

problems are

- how to split a given (sub)sample space,

- how to terminate the splitting,

- how to generate linear discriminant functions for separating the

(sub)classes.

In the next chapter a brief introduction to pattern recognition is given.

Chapter 3 describes the new methods, while in chapter 4 the new algorithms are

7

developed and evaluated. In chapter 5 their performance are compared with

that of other classifiers. Chapter 6 contains the summary and conclusion.

2 INTRODUCTION TO PATTERN RECOGNITION

2.1 Basic concepts

In statistical pattern recognition each object is represented by a feature vector

xt -- [l)r21,*-.,d] containing a measurement of predefined object features.

Which features to use and how many depends on the application. We will,

however, always search for features maximizing the separation between the

classes. Hopefully, feature vectors from objects belonging to different classes

will belong to separable regions in feature space.

The classification is usually done by use of so-called discriminant -functions.

This is a set of functions gi(x), one function for each class wi , i = 1,2,... ,c.

An object with feature vector x is assigned to the class with maximum

discriminant value. That is, the object is assigned to Wk if

gk(x) =max {g,(x)} . (2.1)
#

This decision rule corresponds to dividing the feature space into disjoint regions

/i , i = 1,2,... , c and assigning an object with feature vector x to Wk if

x E flk. A hypersurface which separates two regions, say Pi and 11j, is a

hypersurface containing vectors x where

g,(x) = gj(x) and

g,(x) > gk(x) k i,j. (2.2)

Figure 2.1 shows a 3-class, two dimensional feature space as an example.

8

X2:

CLASS (2 0

0 0 CLASSG) 1S0 O0

A 0_A A 0

/CLASS
3

A Ag
A0

0 0

x1

Figure 2.1: Two dimensional feature space, 3 classes.

A central problem in the classification theory is how to design efficient

discriminant functions. Two main approaches are available; supervised and

unsupervised learning. In this thesis we will consider the supervised learning

approach only.

The most usual way of designing and evaluating discriminant functions is shown

in figure 2.2 and is described in the following. In supervised learning we have

available a data set where the true class of each feature vector (sample) is known

in advance. Usually the data set is first divided into two subsets, one design set

and one test set. The design set is then used for generating the classifier

(discriminant functions). The test set is used for the evaluation. The reason for

using an independent test set is that a too optimistic performance is achieved if

design and testing are based on the same data. Other approaches for evaluating

classifiers (error rate estimation) are also available (e.g. Hand [16, 17]).

The image processing and pattern recognition group at the Norwegian Defence

Research Establishment (NDRE) is mostly concerned with real time

applications of image analysis/pattern recognition. Typically, 25 TV-images are

to be processed each second. Thus a very fast decision making (classification)

algorithm is needed. However, the time required for designing (training) the

9

I ENERATING oDESISION

DESIGN SET CLASSIFIER RULE

TEST SET DESISION EVALUATING

RULE THE CLASSIFIER

Figure 2.2: Illustration of design and evaluation of a classifier using the supervised

learning approach.

classifier is of minor importance for us.

2.2 Linear classifiers

The discriminant functions of linear classifiers are of the form

d

g,(x) = , za,j + a1o (2.3)
j=1

where aij are real coefficients. By defining the augmented feature vector

a tw ex

and the weight vector

10

ajo

aa -

aid

the discriminant function in 2.3 may be expressed by the inner product between

a, and the augmented feature vector y:

g,(x) = a' y.

It is easy to verify that the hypersurface separating two classes is a hyperplane

perpendicular to the vector

a = a,- a3 . (2.4)

Advantages of the linear classifier are the computational speed and ease of

implementation. However, the error rate may be high if the classes are not

(atrr-st) linearly separable.

2.3 Quadratic classifiers

The discriminant functions of quadratic classifiers are given by

g1(x) = x, W, x + w, x + w, (2.5)

where Wi is a d x d-matrix, w, is a d-dimensional vector and wi is a scalar. It

may be shown that the decision surfaces between two classes are hyperquadratic,

and can assume several forms: Pairs of hyperplanes, hyperspheres,

hyperellipsoides and hyperparaboloids. Quadratic classifiers usually give a lower

error rate than linear classifiers, and they are almost as fast provided that d is

11

"small" [281. In fact, one may easily show that dd) multiplications (and

additions) are required for computing the discriminant functions for each class.

In figure 2.3 a two class two-dimensional example is shown. 300 samples are

generated from two bivariate Gaussian distributions. 150 of them are generated

from a distribution with mean vector [3, 0]', unit variance and 150 samples from

a N I, 0
*a(O,[0]) distribution. The linear decision boundary is found by using

the mean squared error method, and the quadratic surface is found by using the

maximum likelihood method assuming Gaussian distributions. For details see

Duda and Hart [8]. From the figure we can see that 6.0% of the samples in the

1.62 0

00

0
0 00

o
0

0 0 0

0 o X x

0 0 X)C X KX
X

0 P 0 X 0X X
0 00 00o 0 K , X xx

8 0%0 0 0 0 0X X

0 00%

0

0 0
o0 0

-o .095 0 .- ~
-2 .S S.649

Figure 2.3: Examples of decisions boundaries when using linear and quadratic

classifiers.

design set are misclassified if we're using the linear classifier and 4.7% if the

quadratic one is used. Their error rates are 6.7% and 5.0% respectively.

Unfortunately, linear and quadratic classifiers will in general not be able to

handle data sets containing multiple modes and/or concavities satisfactorily. An

example is given in figure 2.4 where a linear classifier is used to discriminate
between two "banana"-distributed classes. Although the classes form almost

non-overlapping clusters, the error rate is quite high. The same will be true for

the quadratic classifier.

12

0 00

0 0~ 8 9 0 X 2

oo%0 000°

0 0 % 0 0 0

0 o 0 0 X X

0x X

0 0 0 X X XX #
0* 00:

0
X X X

O o X X

0 1 '% 0 00 kX V

0 l o 0o x I, c x x

0: o o x xX

0 o % 0 0 o XKx

0 0 0 X

0 00 X 411 LX

0 00 0 0 X I
X4 X IC X X X

X X X IC X X
00 000 0 0 ~I

X Ic

X X x x
-ioxsix X

Figure 2.4: An example where both the linear and the quadratic classifiers fail.

2.4 Piecewise linear classifiers

A piecewise linear classifier, abbreviated PLC, may be defined as a classifier

where the hypersurface separating two classes consists of hyperplanes. In other

words, the hypersurface is piecewise linear. As an example, a piecewise linear

classifier which discriminates well between the two banana distributions used in

figure 2.4 is shown in figure 2.5.

Many algorithms for constructing piecewise linear classifiers have been

suggested. The most important ones fall into one of the two following groups:

a) Iterative methods based on a given (fixed) number of discriminant

functions (number of weight vectors).

b) Methods which increase the number of discriminant functions until the

design set is correctly classified.

The group a) - algorithms require the number of weight vectors to be given in

advance. This is generally a disadvantage because it often has to be chosen by

trial and error. On the other hand, the group b) - classifiers may be very

13

S .919
00 0 0

0 0
00 00 X

08 00,
0 900 o %0Oo 00 0

0o 0 0 ox

%00oo
0

0 00 KK

0 QJ K K
X K

- 0..0o , K

ol00 0 X KK X
01 0% 0 X

0 X

0 0 0 KK Ox x XX K
KX

K

-0 (b 0 X X AX X
€

F Kinear c

K au if hK)k

KK 'C

not well separated. In this case the resulting classifier might turn out to be too

complex and time consuming for many applications. We will now briefly

describe the most important classifiers in the two groups.

Kesler constructed a c-class linear classifier [8] which in turn was modified to a

c-class piecewise linear classifier by Duda and Fossum [71. Instead of using only

one weight vector for representing each class (as Kesler did), several weight

vectors were applied. Assume we have determined n, linear discrimninant

functions for wi (weight vectors a ,,a2,-.. , a%). Then an object with feature
vector x is assigned to Wk if

gk(x) = max {g1(x)}

IX

=- max a y} (2.6)

where y denotes the corresponding augmented feature vector.

The problem is how to train the classifier. Kesler modified the fixed increment

rule for linear classifiers. This training process is an iterative procedure, making

the classifier more sensitive to the misclassified samples.

14

The classifier of Duda and Fossum is based on 2.6, and they modified Keslers

rule further so several weight vectors could be trained for representing each

class. Assume for a given augmented feature vector y from wi

a= , maxaY} k=1,2,...,n,,.

Now, a correction is made if and only if gi(x) - gk(x) , k # i, is less than a

margin M. In other words

a! M<ay k i (2.7)S,' -, M > 0

and the following new weight vectors are generated in the m'th correction,

m>1

f a,(m-1)+wny , p=i, q=j

apq(m)= ak,(m-1)-wmy ,p=k, q=l (2.8)

apq(m - 1) , otherwise

where

0 < Wmin < W m < Wmaz.

The constants wi, WinX, and the margin M have to be found by trial and

error, and the way of generating wm has to be known in advance.

Chang [3] presented an algorithm for the two-class problem where the piecewise

linear discriminant function p(x, a,, a2, .., an) is represented in terms of the so

called maximum and minimum functions. For example,

p(x, aja 2,- ,a,) =max min atY , at yl,.. ,min at y,, *,atyjj (2.9

15

is a piecewise linear function, and y is still the augmented vector of x. We also

notice that 2.9 is a generalization of 2.6 (for the two-class problem). Moreover,

a sample x is assigned to w, if p(x, a,, a2, a.) > 0, otherwise it is assigned to

w2 . The training procedure is iterative, and the weight vectors are trained one

at a time. In iteration i + 1, the weight vector ak(i + 1), k = 1, 2,.., n is found

by using a linear separation procedure on the data set Ak(i). This is a subset of

the design set containing all samples for which p(x, a,.--, a,,) = a'(i)y. This

algorithm will hopefully find a suitable solution within a prespecified number of

iterations.

Unfortunately the combination of max and min functions of the piecewise linear

function has to be determined by trial and error. This may be a very difficult

task.

Takiyama has made a committee machine for the two-class problem [34]. The

committee machine is illustrated in figure 2.6. The decision logic and the

h2 UX COMMITTEE wi3,i =1,2
_ MACHINE

h (x - 1, aity >' 0

= , OTHERWISE

Figure 2.6: Diagram of the committee machine

number of weight vectors has to be known in advance. The best known logics

are probably the majority logic and the veto logic. The majority logic assigns a

sample x to w, if

16

Zh,(x) > n +- 1 (2.10)
- 2

and the veto logic assigns a sample to w, if

n h,(x) = ,n. (2.11)
i=1

The problem is to determine the weight vectors a,, - , a,,. Takiyama [34] has

proposed an algorithm which try to optimize a modified perceptron criterion

function with a gradient descent procedure.

A general disadvantage with the group a) - approaches is, as already

mentioned, that the number of weight vectors has to be determined in advance.

Furthermore, in Chang's and Takiyama's proposals, only the two-class problem

has been considered.

Mangasarian [25], Mizouguchi et al [261 and Lee and Richards [24] have

developed group b) - algorithms for the two-class problem. We will briefly

describe their methods in the following.

Mangasarian [25] proposed an algorithm for using piecewise linear decision

boundaries. The method is illustrated in figure 2.7 and figure 2.8. Linear

programming minimizing the perceptron criterion function is used for dividing

the feature space into three regions by two parallel hyperplanes. The region to

the positive side of both hyperplanes, {y : aly > 3 }, will contain only samples

from wl. The region to the negative side of both hyperplanes, {y : a'y < a,},

(we assume a, < 3i Vi), contains samples from w2 only. The "confusion" region

between the two hyperplanes may contain samples from both classes. The

algorithm proceeds by applying the same procedure to the samples in the

confusion region. This results in a confusion region within the confusion region,

and so forth. The process terminates when the confusion region is empty. In

other words, the termination takes place when all samples in the design set are

correctly classified. Alternatively one may simply terminate the algorithm after

a predetermined number of iterations, leaving a region with unclassified

17

N 0

A0 0
e'l klA 0

A A

9.OP

Figure 2.8: Illustration of decision boundary achieved by using Mangasarian's
classifier.

18

samples. The decision boundary of the algorithm is illustrated in figure 2.8 for

the situation where separation between the classes is obtained by using two

weight vectors.

The piecewise linear classifier of Mizoguchi et al (261 is based on combining

linear discriminant functions in a tree design. First the feature space is divided

into two regions by using a linear discriminant function. Next, if the classes are

not linearly separable, each of the two regions is divided into two subregions

with linear discriminant functions. This process is repeated until all samples

within a subregion belong to the same class. An example of a piecewise linear

classifier constructed in this way is given in figure 2.9.

Figure 2.9: Example of a piecewise linear classifier constructed with the algorithm

of Mizoguchi et al. The corresponding tree structure is also shown.

Lee and Richards [241 have developed a piecewise linear classifier based on the

concept of single sided decision hyperplane. This is a hyperplane g;,,v- N,

a ty = 0 which has samples of one class only on the positive side of the plane

(aty > 0). On the negative side, samples from several classes may be present.

Initially, a single sided decision hyperplane perpendicular to al is computed.

Then, the class of the samples on the positive side of the hyperplane is

identified. Now, if samples from both classes are located on the negative side of

19

the hyperplane, then a new single sided decision hyperplane is created in this

sub space. This process continues until samples from one class only are found on

the negative side of the last constructed hyperplane. When the algorithm has

terminated, we know that the samples in the design set is correctly classified.

This classifier may also be considered as a committee machine using seniority

logic. In majority and veto logics, all the committee members have the same

influence. This is not true for the seniority logic where some members are more

influential than others. The influence and the number of committee members

are determined during the training process.

The algorithm is illustrated in figure 2.10. hi(x) is defined in figure 2.6. We

(h2 (J

Figure 2.10: Examples of classification with Lee and Richards algorithm.

may also eompute all hi(x) and then use a logical network for the classification.

The network's truth table of the classifier in figure 2.10 is given in table 2.1. X

denotes a "don't care" state of a committee member.

Hoffman and Moe [19] have developed an interesting two-class algorithm which

20

Commitee member Class

hi h2 h3

I X X WI

0 1 X W2

0 0 1 W2

0 0 0

Table 2.1: Truth table for the decision logic for the classifier used in figure 2.10.

does not fit into any of the two above mentioned groups of algorithms. They

constructed a linear discriminant function and created a confusion region

(a < aty </) in the same way as Mangasarian [25]. But, opposed to him, they

clustered the samples from each class in the confusion region into several

clusters according to the following procedure. First the samples (from each

class) are divided into two clusters. Next, the clusters, which are sufficiently

"large" (with respect to the within-class scatter matrix), are divided further.

This process continues until all clusters are "equal" and sufficiently "small" (also

with respect to the within-class scatter matrix). Finally, they computed the

sample mean of each cluster. The classifier assigns a sample y to w 2 if a t y < a,

to w, if aty > ,3 and to the class with nearest cluster mean if a < aty < #.

As we have already mentioned, all algorithms-we have described except the

classifier of Duda and Fossum [7] are developed for the two-class problem only.

If we want to classify an object to one out of c classes, c > 2, this may be done

by creating two main class groups where several classes are merged together.

While classifying, a sample is classified through different class groups until it is

assigned to one of the c classes. Unfortunately this process makes the classifier

much more complicated for the c-class problem than e.g. the quadratic

classifier. An example where c = 4 is shown in figure 2.11. w, and w2 is merged

together to one class group, w3 and w4 to another. After first being assigned to

either the class group w 1 U w2 or the class group w3 U w4, a sample y can be

assigned to one of the 4 classes.

If samples from the different classes are partly overlapping each other, no simple

and reliable classifier is available. It is difficult to have any general knowledge

21

CLASSIFIER NO 1I
>'0 => x~C 1 U W2

Figure 2.11: Illustration of how to use a two-class classifier for the c-class prob-

lem.

about the performance of the group a)-algorithms. Furthermore, one may easily

be convinced that the group b)-algorithms tend to be quite complicated. This

is of course unconvenient from a computational point of view. It is also

important to remember that a correctly classified design set does not in general

imply low error rate and hence a reliable classifier.

Therefore, one objective is to develope a classifier which attempts to fulfill the

following requirements:

-It must be able to handle the c-class problem easily.

-A low error rate should be achieved with a relatively small number of

(linear) discriminant functions rather than resulting in a correctly

classified design set.

In the next chapter we will describe a method which attempts to accomplish

these requirements.

22

3 THE NEW CONCEPT

In this chapter an introduction to a new concept for constructing a piecewise

linear classifier is presented (for a brief presentation of the method, see also

[29]). First the sample space of each class may be partitioned (split) into several

(> 1) subsample spaces. The samples from a given class laying in the same

subsample space are said to belong to the same subclass. The partitioning is

done in order to make the classifier more adaptable to the classes. Next, the

generated subclass information is used for constructing the piecewise linear

discriminant function. Each subclass is represented by one linear discriminant

function (one weight vector). However, since the distributions of the classes

usually are unknown, estimation techniques have to be used. As an example the

splitting process becomes a clustering process which divides the samples in a

given (sub)class into clusters.

The concept is illustrated by the following "quasi-Pascal" statements:

n := c; finished:=FALSE;

<Initially, assign one subclass to each class, (ai := w; , i = 1,..., c) >;

REPEAT

<Construct a piecewise linear classifier using the subclasses al,..,a,n >;

<Compute an evaluation criterion for the classifier>;

IF <Sufficiently good performance> THEN finished:=TRUE

ELSE BEGIN

<Split the sample space of one of the subclasses a1,..., a,, >;

END;

UNTIL ((finished) OR (n > n,,,,));

<Generate the final classifier>;

The algorithm is illustrated in figure 3.1. Here we have assumed the classes to

be "banana" distributed. In figure 3.1a, a linear classifier is applied, in

figure 3.1b the sample space of one of the classes is split into two subsample

spaces and the resulting classifier is shown. Finally in figure 3.1c the sample

23

space of both classes are split in two subsample spaces each and the resulting

classifier is shown.

CL2 a2

a2 3a 3 3
a4

C&)2 G2C)

a b c

Figure 3.1: Illustration of how the algorithm works.

Although the basic idea is simple, there are several difficulties which have to be

solved. The most important decisions to make are:

- which (sub)sample space to split,

- how to split a given (sub)sample space,

- how to use the subclass information for generating a piecewise linear

discrirninant function,

- how to terminate the splitting.

The algorithms making these decisions are developed in the next chapter. In the

following, a brief description of the main ideas is given.

3.1 Finding a suitable (sub)sample space for splitting

The first problem we will study is how to find the best (sub)sample space to

split. This is very important because we want to make the classifier as

24

adaptable as possible to the classes with only a limited number of linear

discriminant functions. Two different splitting strategies have been developed.

The first strategy is a hillclimbing approach. This algorithm proceeds through a

sequence of essentially equal steps. Assume that there are n subclasses. Now,

we will in turn pick one of the n subclasses and

- split the sample space,

- generate a classifier for the particular set of subclasses,

- evaluate the classifier.

The subclass (when split) which result in a classifier having the best

performance is chosen. We see that we will always split the "best" (sub)sample

space. However, this approach requires a large amount of computation.

The procedure may also be illustrated with the following "quasi-Pascal"

statements, where n is the number of subclasses and ai denotes the "'th subclass.

Pem, := 1.0;

FORi:= 1 TOnDO

BEGIN

<Split the sample space of a, >;

<Generate a piecewise linear classifier using c,. •, i, Oi," • •, i , >;

<Compute the error rate P, >;

IF (P, < Pn.) THEN

BEGIN
k := i;

Pe,,,ft:= P;

END;

<Merge the sample spaces of oi, and a,2 >;

END;

<Split the sample space of ak >;

25

As seen, this approach is very time consuming. Therefore, an other approach

has been considered for situations where the design time is important.

It is reasonable to assume that the classifier need to be more sensitive with

respect to the (sub)class having the greatest contribution to the (estimated)

error rate. A performance improvement is hopefully achieved by splitting the

sample space of this (sub)class. It is however based on the assumption that the

error rate of a given (sub)class is caused by either multimodality or concavity

and not by overlap with other (sub)classes. The procedure is illustrated in the

following statements:

<Generate a piecewise linear classifier using the (sub)classes al,..., an >;

<Find the (sub)class ak contributing most to P, >

<Split the sample space of (sub)class ak >;

3.2 How to split a given subsample space

The purpose of the splitting module is to divide the sample space of a given

(sub)class iato two new disjoint sample spaces which are as "much separated"

as possible. This process becomes a clustering procedure because no a priori

information concerning the distributions and the sample spaces is assumed. The

clustering is a quite difficult task because in a particular splitting there are far

more possible partitions than can be evaluated. As an example, it is easily

shown that there are approximately 10° possible allocations of 100 samples into

two clusters. Thus it is necessary to find a more efficient search method than

the exhaustive search.

To achieve our goal we choose the method of limiting the search space. The

algorithm consists of two parts.

First a coarse clustering is performed, followed by an optimization procedure

based on the initial clustering.

Two strategies for the coarse clustering are developed. The simplest one divides

26

the data set along the direction of maximum variance. This is done by finding

the principal axis of the data set. Hopefully the clusters are well separated.

The other strategy is somewhat more complicated. First a pair of widely

separated samples is identified and used as starting samples (one for each

cluster). Then each sample in the data set is assigned to one of the two clusters

according to a given rule.

The results of these coarse clusterings are obviously not optimal with respect to

any criterion. Therefore an optimization algorithm may be applied.

This optimization algorithm is based on evolutionary search, which

unfortunately is a suboptimal procedure. This is because it is impossible to use

an optimal branch and bound algorithm [23] together with the chosen criterion

function. The branch and bound algorithm does also require a great amount of

computer power if there are many samples in the data set to be split.

The evolutionary search uses the result from the previous step as an initial

clustering. Next each sample is in turn considered as a candidate for

reallocation. If reallocation results in an improved value of the criterion

function, the sample is transferred. Otherwise it remains in its original cluster.

When all the samples in the data set have been investigated, one iteration is

finished. The algorithm terminates when no samples are transferred during an

iteration.

27

3.3 Generation of piecewise linear classifiers

Given a set of n subclasses, a piecewise linear discriminant function has to be

generated.

The simplest way of generating a piecewise linear discriminant function is to use

the nearest sub-mean classifier. This classifier assigns a sample to the class with

the nearest sub-mean. It is reasonable to assume that it has only limited ability

to be adapted to the data set satisfactorily. Therefore other - and more

sophisticated - methods are introduced.

Two of them are based on the mean squared error approach. In this approach

weight vectors are produced which map the data set into a prespecified set of

points with minimum squared error. It was initially assumed that classifiers

based on the mean squared error approach would perform well because these

classifiers are minimum mean squared error approximations to the Bayes

classifier.

We will also introduce a new approach. The aim here is to generate a piecewise

linear classifier based on separating certain pairs of (sub)classes by a

hyperplane. First the algorithm determines the pairs of (sub)classes to be

separated. Let us for a moment assume the density of each class to be known.

Then two (sub)classes are assumed to need separation if the optimal

hypersurface is intersecting the line going between the means of the

(sub)classes. However, as long as these densities are unknown, these pairs are

determined by using estimation techniques. Next, we have to design a linear

classifier for each pair of (sub)classes. Finally, a piecewise linear classifier based

on the linear classifiers is computed. This is done by using the generalized

inverse, which is computed with the singular value decomposition method.

28

3.4 Termination of the algorithm and generation of the final

classifier

The last operation to be done is to terminate the splitting process and generate

a final classifier.

We first define the maximum number of subclasses of the classifier (maximum

number of discriminant functions). Afterwards the splitting process continues

until

a) a maximum number of subclasses is reached,

b) no subclass can be split further,

c) the maximum contribution to the error rate (from one subclass) is

sufficiently small.

The first criterion terminates the splitting when the maximum number of

discriminant functions of the classifier is reached, and the second one is used if

the number of samples in any subclass is too low. The third criterion terminates

the splitting process if it is reasonable to belive that little reduction in the

(design set based) error rate estimate is gained by further splitting.

Among a set of classifiers (based on different number of subclasses), we are to

find a classifier with sufficiently good performance. Two ways to do this are

suggested.

The first one is simply to find the classifier minimizing a given criterion

function. The criterion function proposed in this work combines the error rate

and the number of linear classifiers.

The second method selects the classifier having the smallest number of weight

vectors among those which are sufficiently close to the classifier with the lowest

design set based error rate estimate.

29

4 DEVELOPMENT OF THE ALGORITHMS

4.1 Determination of a suitable subsample space to split

In chapter 3 we stated that the sample space of each class (the space for which

p(xlwi) > 0) was partitioned into disjoint subsample spaces in order to make the

classifier more adaptable to the classes. This process is iterative. One

(sub)sample space is being split during one iteration, and it is never later

merged together with other (sub)sample spaces. Therefore it is of considerable

importance to determine the right one.

In the previous chapter, we suggested two diffirent strategies for selecting a

(sub)sample space for splitting. The first one was a hillclimbing approach,

which found the "best" (sub)sample space to split. The other one split the

sample space of the (sub)class contributing most to the error rate. These

strategies will be described in section 4.1.1 and 4.1.2 respectively. However, we

will start with defining the (sub)sample spaces and deriving simple estimators

for the error rate of a (sub)class.

At some point in the process, let us assume that we have split the sample spaces

of the c classes into n subsample spaces and that the class wi consists of ni

disjoint subsample spaces. In other words

C

n - i .
i~l

Furthermore, let Si denote the sample space of wi and let Si, denote the j'th

subsample space of wi. The subsample spaces of each class are disjoint which

implies

S,, nSi,=@, j-k

and

30

si= S, uS&u*...uS,

We will in this section assume the n subsample spaces to be known a priori.

Finally, let #j, denote the statement "The sample x E Si,".

The error rate of a classifier, also called the probability of misclassifying

samples, is given as

C

P(e) = "P(w) P(e w) (4.1)
i=i

where P(e) is the overall probability of misclassifying samples (the error rate),

P(wj) is the a priori probability of wi and P(elw,) is the conditional probability

of misclassifying samples from wi. However, when computing the error rate, we

need to know the conditional probability density p(xlwi) V i. Usually these

densities are not available. Therefore we have to use estimation techniques for

these tasks. The estimation is based on a data set consisting of samples

(realisations) drawn independently according to the class densities

p(xlu,,), i = 1,".,c.

Now, assume that a classifier is available. Using

fA (4.2)P(elw,) =(4)

we obtain

15(e) = 'P(.,)-f (4.3)
i=1 N

where fi is the number of misclassifications and Ni denotes the number of

samples representing wi.

If desirable, we may also use the subclass information for obtaining the error

rate. This is easily seen by using N- and - as estimators for P(3,, I w,) and

31

P(e I O/,,wi) respectively. Ni, and f,, denote respectively the number of samples

and the number of misclassifications from the samples in the j'th subclass of wi.

As a special case, we see that P(e) = I if P(w,) = - where f and N denote the

total number of misclassifications and the total number of samples in the data

set.

We will also in the following use a performance measure Pp, defined as

Pp = 1 - Pe, where P, denotes the design set based error rate estimate. This

performance measure is useful for measuring how well a classifier is adapted to

the data set.

Now, when the error rates and their estimates have been stated, we will study

how this information may be used for determining which subsample space to

split in the next iteration.

4.1.1 The hillclimbing approach

This algorithm proceeds through a sequence of essentially equal steps. Assume

that n subsample spaces are available at a certain step. Then, pick one of the n

subsample spaces in turn, split, generate a classifier and evaluate the result.

The split, resulting in a classifier having the best performance is chosen, and the

next step involving n + 1 subclasses is initiated.

As in chapter 3 we define:

a, = x belongs to w, and x E St1

a,= x belongs to w, and x E S1.1 (4.4)

a1+ = x belongs to w2 and x E S 2,

an = x belongs to w, and x E S,.,

32

The approach may be illustrated in the following statements:

Ppmax:=0.0;

FOR i:=1 TO n DO

BEGIN

<Split the sample space of a, >;

<Generate a PLC using the subclasses al,. Ia, Ci 2, C ,42 , >;

<Compute the performance Pp >;

IF (Pp > Ppm,.) THEN

BEGIN

k:=i;

Ppa, := PP;

END;

<Merge the sample spaces of aj, and ai2 >;

END;

<Split the sample space of ak >;

The performance is computed according to eq 4.3. This algorithm is quite time

consuming because in a given step each subsample space has to be split, a

classifier generated and the result evaluated.

Even though the computation time required for the design phase is not

important in most cases, it is of interest to investigate whether or not it is

possible to reduce the design time without reducing reliability. Therefore

another algorithm is described in the following.

4.1.2 A contribution based splitting

This algorithm splits and evaluates only one (sub)sample space in each

iteration. We must therefore try to select the split which is most likely to

improve the classification result. In order to obtain this, it is reasonable to split

the sample space of the (sub)class with the largest contribution to the design

set based error rate P,. This is based on the assumption that contribution to P,

from a subclasz is caused by concavity and/or multimodality of the (sub)class

33

and not by overlap with another subclass. The procedure may be illustrated

with the following statements:

<Generate a PLC using the subclasses al,., a, >;

<Find the subclass ak contributing most to P, >

<Split the sample space of ak >;

We will now search for the subclass with the largest contribution to P,. Using

previously defined notation, this is the subclass Qk for which

P(e, ak) = max {P(W-g(j))fg(,)h()} (4.5)

where aj is defined according to 4.4. Moreover, g(j) finds the class which the

subclass aj belongs to, and h(j) returns the subclass number of ai within Wg,().

In the two previous sections, we have developed two different splitting

strategies. For being able to evaluate these different algorithms, several

simulation experiments have been carried out.

4.1.3 Comparison of the two strategies

The only way of comparing these two strategies is through Monte Carlo

simulations. In this context Monte Carlo simulations consists of first generating

data sets for the different classes. Then for each subclass selection strategy,

splitting algorithm and classifier algorithm, the performance is computed. This

process is called a replication, and it is repeated a number of times in order to

obtain reliable statistics on the performance. The mean of the performance and

the corresponding standard deviation are used as statistics in this evaluation.

The standard deviation of the performance may be viewed as a stability

criterion. If the standard deviation is high, it may be assumed that the splitting

performance depends very much on actual realizations, and hence the algorithm

may be unreliable.

The disadvantage of using Monte Carlo simulations is that we cannot draw

general conclusions. However, by using many different probability distributionb

34

and number of samples in the data sets, the evaluation should fairly well

represent the algorithms capability. In the simulations we used classes

containing Gaussian distributed, double exponentially distributed, "banana"

distributed (to be defined below) and "bimodal Gaussian" distributed samples.

Moreover, in the simulations using Gaussian or double exponential distributed

samples, different relative positions of the distributions were evaluated, see

figure 4.1. Simulations were made for - = k x 10*, k = 0, 1,..., 9. For each

G)2

/A

Figure 4.1: Distribution of Gaussian and double exponential samples.

angle -1, 4 different distances ry were used. In all simulations we have used

A A, 0

(0 A2)

In order to have a "rotation invariant" distance rp, we defined

r-,=d(o, +Aj)

where

a,= [cos(y/),sin(-t)] (A, 0) (:i(-Y))

35

This means that a., denotes the standard deviation of the samples from w,

projected into the vector [cos(-y),sin(yt)] t . When IAI and -f are known, A 2 can bE

determined as

_ 2 (A(1) + r. cos(-t)

S2 - A(2) + r, sin(-r)

By using this way of defining the distance between p1 and IA., the overlap of

samples between w, and w2 is, for a given d, almost independent of the angle -f.

Simulations are made using d = 0.5, 1.0,1.5 and 2.0.

Simulations have also been carried out with samples from wl taken from a

"banana" distribution, and the samples from w2 taken from a Gaussian

distribution. This is shown in figure 4.2. In these simulations, the W2 samples

/ T
/S

Figure 4.2: Distribution of banana and Gaussian distribution.

are taken from a N(O, -s I) distribution. The banana distribution is defined

according to figure 4.3. In polar coordinates, using p as origo, the banana

distribution has a density

p(r, 0) = p(O)p(r10)

36

Figure 4.3: The banana distribution.

where

2 -1-0 - oj + 10 I - Ej <

() 0 otherwise

p(rJO) = N(5,a(9)) (ro = 5)

and

o.(o) - 1- - El
7

Due to symmetry, the results are independent of 0. Simulations are made for 6

different values of s (s = L, k = 1,- , 6) to investigate various degrees of

overlap.

Finally, a 3 class problem was simulated in order to demonstrate the multi-clas

properties of the classifiers, as well as to see how the methods handle

multimodale distributions. The distributions were chosen as follows:

37

p(xw) = N ((0

Simulations using s = 0.5, 1.0, 1.5 and 2.0 have been made.

All classifiers to be described in section 4.3 were used in the simulations.

Moreover, there were 25 samples in the data set of each class. In some of the

simulations we have also used 150 samples in the data set of each class

(Gaussian and double exponential distributions using -y = 30* and -f = 600, the

banana/Gaussian distributions and the three class problem). The reason for

mostly using small data sets is that the computation time increases considerably

as the number of samples increases. Equal a priori probabilities have also been

assumed everywhere in these simulations, and only two-dimensional samples

have been used. These restrictions are caused by the limitations imposed by the

high computationally costs of the simulations. Therefore, we prefer to study

situations in reasonable detail rather than doing exploratory analysis of a larger

but less well defined classes of situations. Moreover, we have no indications that

the algorithms should behave essentially different in a higher dimeilsional space,

or in situations with unequal a priori probablities.

It is unfortunately impossible to present all results from the simulations.

Therefore we will only illustrate the main results using examples and give some

general remarks. However, all results are available on request.

38

Before discussing our observations, we present some examples of the simulation

results. Figure 4.4 shows the mean performance of simulations using double

exponential distributions and the classifier described in 4.3.4. In figure 4.5 we

have plotted the results from the simulations where the classes are banana and

Gaussian distributed. Furthermore, the results are also tabulated in

tables 4.1-4.4. Both mean and standard deviation of P, are given.
d =0.5

413

4 241.2

4.1.3

4.1.3
d 1.0 4.1.2 4.1,2

4.1.3 d 1.54 1.3

4.1.1-2-I .1.

z.e %.0 .3 4'.0 54 ". '.0 .0 $.0 ".0 o 0 .

Figure 4.4: Design set based error rate estimates using 25 (a) and 150 (b) samples

taken from double exponential distributions, 7 = 30' . Plots are made

for both splitting strategies with d==0.5, 1.0 and 1.5.

As expected we found the hillclimbing approach to be clearly better than the

contribution based splitting. At least 10% - 20% better performance is achieved

by using the hilclimbing approach. When using the contribution based

splitting, the standard deviation of the performance increases rapidly as the

number of subclasses increases. These observations should indicate that this

procedure is somewhat unstable and hence unreliable. However, this simplified

approach may perform satisfactorily if the main reason for errors is caused by

multiple mode and/or concavities. This fact is seen from the simulations using

classes with Gaussian and banana distributed samples with small values of s.

However, when there are moderate or more overlap between the classes, the

contribution based splitting performs poorly. In both approaches, the

performance do also tend to be poor and unreliable when the number of

samples in the subclasses are small. This is for instance seen in the simulations

using 25 samples in each class and having 6-8 subclasses. In these simulations,

39

S-3.0

- 2.0

4.1.2.

s-2.0

4.1.3.

- "4.1.3

2.0 3.0 .0 'S.0 'S.0 2 30 Z.0 S .0 4, O S.0 6.0 1.0

Figure 4.5: Design set based error rate estimates using 25 (a) and 150 (b) samples

taken from banana and Gaussian distributions. Plots are made for

both splitting strategies with s=1.0, 2.0 and 3.0.

the standard deviation becomes quite high.

To conclude this discussion, we found the hillclimbing approach to be clearly

superior to the contribution based splitting. Thus, it should be used in all

situations for which the design time is of minor importance.

40

Spl. d No. of subclasses

2 3 4 5 6 7 8

4.1.2 0.5 0.178 0.149 0.132 0.126 0.124 0.127 0.135

0.049 0.043 0.041 0.042 0.045 0.055 0.073

4.1.2 1.0 0.066 0.060 0.054 0.052 0.054 0.062 0.069

0.034 0.031 0.028 0.028 0.033 0.052 0.066

4.1.2 1.5 0.021 0.020 0.018 0.018 0.019 0.022 0.029

0.021 0.019 0.018 0.020 0.020 0.031 0.044

4.1.2 2.0 0.006 0.007 0.006 0.006 0.007 0.009 0.022

0.011 0.014 0.014 0.015 0.018 0.026 0.034

4.1.3 0.5 0.178 0.164 0.152 0.156 0.140 0,120 0.104

0.049 0.047 0.049 0.093 0.122 0.146 0.153

4.1.3 1.0 0.065 0.069 0.085 0.085 0.071 0.068 0.059

0.033 0.043 0.091 0.113 0.135 0.149 0.149

4.1.3 1.5 0.021 0.027 0.041 0.043 0.034 0.026 0.022

0.021 0.031 0.076 0.099 0.102 0.098 0.095

4.1.3 2.0 0.006 0.009 0.018 0.016 0.013 0.012 0.010

0.011 0.024 0.066 0.069 0.067 0.067 0.066

Table 4.1: Results using 25 samples taken from double exponential distributions,

= 300. Both mean and standard deviation of the design set based

error rate estimate are tabulated for each method/distance.

41

Spl. d No. of subclasses

2 3 4 5 6 7 8

4.1.2 0.5 0.213 0.198 0.189 0.184 0.181 0.178 0.177

0.020 0.023 0.024 0.022 0.024 0.025 0.026

4.1.2 1.0 0.087 0.080 0.075 0.072 0.072 0.071 0.071

0.015 0.016 0.015 0.015 0.016 0.016 0.016

4.1.2 1.5 0.032 0.031 0.028 0.027 0.027 0.027 0.027

0.010 0.009 0.009 0.009 0.009 0.009 0.009

4.1.2 2.0 0.012 0.011 0.011 0.010 0.010 0.010 0.010

0.007 0.007 0.007 0.007 0.007 0.007 0.007

4.1.3 0.5 0.213 0.216 0.206 0.203 0.201 0.203 0.205

0.021 0.025 0.026 0.028 0.034 0.052 0.046

4.1.3 1.0 0.087 0.087 0.088 0.086 0.086 0.105 0.113

0.015 0.018 0.019 0.018 0.023 0.081 0.116

4.1.3 1.5 0.032 0.032 0.032 0.039 0.038 0.033 0.044

0.010 0.009 0.013 0.049 0.049 0.051 0.098

4.1.3 2.0 0.012 0.013 0.015 0.019 0.022 0.033 0.035

0.006 0.007 0.011 0.024 0.054 0.090 0.103

Table 4.2: Results using 150 samples taken from double exponential distributions,
- = 30*. Both mean and standard deviation of the design set based

error rate estimate are tabulated for each method/distance.

42

Spl. d No. of subclasses

2 3 4 5 6 7 8

4.1.2 0.5 0.016 0.001 0.000 0.000 0.000 0.000 0.000

0.017 0.006 0.003 0.003 0.003 0.003 0.007

4.1.2 1.0 0.044 0.002 0.001 0.001 0.001 0.001 0.002

0.026 0.009 0.007 0.007 0.007 0.012 0.015

4.1.2 1.5 0.077 0.014 0.009 0.008 0.008 0.010 0.018

0.034 0.018 0.014 0.013 0.014 0.028 0.046

4.1.2 2.0 0.105 0.040 0.030 0.028 0.029 0.035 0.054

0.040 0.029 0.025 0.024 0.025 0.043 0.068

4.1.2 2.5 0.129 0.074 0.061 0.059 0.060 0.072 0.096

0.044 0.037 0.034 0.033 0.037 0.056 0.074

4.1.2 3.0 0.149 0.105 0.093 0.092 0.094 0.107 0.132

0.047 0.042 0.041 0.043 0.046 0.064 0.079

4.1.3 0.5 0.015 0.004 0.002 0.003 0.001 0.001 0.001

0.016 0.018 0.014 0.024 0.015 0.014 0.009

4.1.3 1.0 0.044 0.012 0.011 0.011 0.009 0.007 0.005

0.026 0.029 0.031 0.038 0.041 0.042 0.032

4.1.3 1.5 0.076 0.038 0.051 0.058 0.044 0.034 0.026

0.033 0.045 0.073 0.088 0.083 0.083 0.078

4.1.3 2.0 0.105 0.071 0.084 0.105 0.080 0.067 0.063

0.040 0.052 0.076 0.098 0.095 0.108 0.116

4.1.3 2.5 0.129 0.108 0.122 0.130 0.123 0.107 0.091

0.043 0.055 0.076 0.092 0.113 0.133 0.136

4.1.3 3.0 0.149 0.142 0.143 0.147 0.137 0.118 0.096

0.046 0.060 0.066 0.083 0.117 0.133 0.141

Table 4.3: Results using 25 samples taken from Gaussian and banana distribu-

tions. Both mean and standard deviation of the design set based error

rate estimate are tabulated for each method/distance.

43

Spl. d No. of subclasses

2 3 4 5 6 7 8

4.1.2 0.5 0.036 0.000 0.000 0.000 0.000 0.000 0.000

0.009 0.000 0.000 0.000 0.000 0.000 0.000

4.1.2 1.0 0.078 0.005 0.002 0.002 0.002 0.002 0.002

0.014 0.004 0.003 0.002 0.002 0.003 0.002

4.1.2 1.5 0.115 0.029 0.022 0.020 0.019 0.019 0.019

0.018 0.009 0.008 0.008 0.008 0.008 0.008

4.1.2 2.0 0.147 0.067 0.060 0.057 0.056 0.055 0.055

0.019 0.013 0.014 0.014 0.014 0.014 0.014

4.1.2 2.5 0.173 0.107 0.101 0.099 0.098 0.097 0.097

0.020 0.015 0.015 0.016 0.016 0.016 0.016

4.1.2 3.0 0.192 0.144 0.141 0.139 0.138 0.137 0.137

0.020 0.019 0.019 0.020 0.020 0.020 0.020

4.1.3 0.5 0.036 0.001 0.004 0.003 0.001 0.003 0.003

0.009 0.007 0.023 0.018 0.005 0.016 0.017

4.1.3 1.0 0.078 0.011 0.033 0.058 0.060 0.054 0.065

0.014 0.022 0.066 0.085 0.086 0.076 0.100

4.1.3 1.5 0.115 0.054 0.098 0.100 0.080 0.087 0.080

0.018 0.045 0.087 0.094 0.075 0.075 0.081

4.1.3 2.0 0.146 0.110 0.150 0.139 0.132 0.138 0.116

0.019 0.051 0.081 0.085 0.079 0.085 0.078

4.1.3 2.5 0.172 0.168 0.188 0.178 0.174 0.169 0.167

0.020 0.039 0.058 0.053 0.053 0.061 0.062

4.1.3 3.0 0.192 0.199 0.207 0.198 0.190 0.192 0.189

0.020 0.030 0.034 0.041 0.039 0.049 0.047

Table 4.4: Results using 150 samples taken from Gaussian and banana distribu-

tions. Both mean and standard deviation of the design set based error

rate estimate are tabulated for each method/distance.

44

4.2 How to split a given subsample space

The purpose of the splitting process is to make the classifier more adaptive to

the classes. If a (sub)class to split is known, the splitting algorithm attempts to

divide the given (sub)sample space into two disjoint parts which is as much

separated as possible. Thus, our problem is to divide the sample space S into

two sample spaces S1 and S 2 (S = S1 u S 2 , S1 n S2 = $) such that a given

criterion function is optimized. As an example, we found that maximizing the

distance from the mean of the original (sub)class to the mean of the nearest

new subclass gives good results. Intuitively, this is also a reasonable criterion to

use. Due to unknown probability densities, we have to estimate the criterion

function using the data set X, which consists of N samples representing the

(sub)class to split. Assume the sample spaces S' and S2 are to be evaluated,

and moreover let X, = {x 11, - * XIN } denote the data set of samples for which

x1, E S'. Furthermore, X,' = {x 2 1,-.. , X2 2 } denotes the data set of samples for

which x 2. E S2. Ni denotes the number of samples in Xi, i = 1,2. Then an

estimate of the above criterion is

J(X,) = X2 mmin { x -- Z xk
Nik=1 ~

and the best to do - and hence our aim - is to determine the data sets X1 and

,X2 for which J is optimized. Because S1 and S2 cannot be uniquely determined,

we are choosing one of the possible solutions, for example the one for which the

surface separating S and S2 is the nearest neighbour hypersurface separating

X2 and X 2.This surface may easily be found when X1 and X 2 have been

determined.

As we have seen, the splitting is actually a clustering problem. This problem is

quite difficult to solve due to the astronomical number of possible partitions

which have to be evaluated. Thus we are left with two choices: Either finding a

much more efficient search method than the exhaustive search, or to limit the

search to only parts uf the space of partitions. Optimal splitting according to a

given criterion is possible for a very limited set of criterion functions only [23],

45

and unfortunately it cannot be used with the criterion function we found to be

the best. therefore we have to use a suboptimal algorithm based on the

principle of evolutionary search. Nevertheless it has been found to perform well.

Our algorithm consists of two parts. First a coarse clustering is performed for

creating an initial splitting. Secondly, an optimization procedure based on the

initial splitting is performed. In 4.2.1 the initial splitting is studied, and in 4.2.2

the optimization procedure is considered.

4.2.1 Initial splitting procedures

There are two ways of performing a hierarchical clustering of data sets, either

agglomerative or divisive methods [15]. In agglomerative methods we are

starting with n clusters, one sample in each cluster. Then the two nearest

(according to a given criterion function) clusters are merged, and there are now

n - 1 clusters left. This process continues until the samples are clustered in a

predefined number of clusters. Agglomerative methods may perform well if the

samples actually fall into clusters which are fairly well separated. Otherwise,

most of the samples usually tend to be included in one cluster only, and hence a

very poor splitting will result. For our problems, the above requirement is

generally not fulfilled since samples may have been taken from a unimodale

distribution. Therefore agglomerative clustering algorithms are not appropriate.

In a divisive hierarchical clustering algorithm, a class represented by a set of

samples is split into two clusters. Divisive algorithms are useful for splitting in

situations where all samples are taken from a unimodale probability

distribution. We have studied two different strategies. These will be described

in the following paragraphs. In 4.2.1.3 problems concerning outliers are treated.

4.2.1.1 Splitting based on the scatter matrix

The first strategy described is quite simple to compute. It is based on dividing

the data set along the direction of maximum variance. This is a reasonable

strategy to use for several reasons. First of all the method results in new clusters

with reduced variance in the direction of the maximum variance of the parent

cluster. Therefore we may assume that the trace of the (sub)classes will be

46

substantially reduced. Moreover, if we assume that the samples in the data set

are taken from a Gaussian distribution, then we are maximizing the projected

dist-nce from the mean of the data set to the mean of the nearest (new) cluster.

This direction is given by the vector a, for which

S[a(Xk-)]2 = max 1 1: [y'(xk -, al = 11rhI = 1 (4.6)
k=1 =

where N is the number of samples in the given data set, p its mean, and -Y is an

arbitrary vector of unit length. The vector a is easily obtained by using the

scatter matrix W of the data set which is defined as

N

W = A)((x, - (4.7)
i=l1

The vector a is parallel to the eigenvector corresponding to the greatest

eigenvalue of W. When the direction vector is found, a sample xk is assigned to

cluster 1 if at(xk - A) > 0. Otherwise it is assigned to cluster 2.

Thus, using this algorithm the data set is split by a hyperplane perpendicular to

a which is passing through the mean of the data set.

4.2.1.2 Splitting based on starting samples

This algorithm starts with finding two samples, one "representative" for each

(new) clusters. Each unclustered sample is then assigned to one of the clusters,

i.e. to the cluster with the nearest mean, the nearest sample etc. The algorithm

may be illustrated with the following statements:

47

<Find the starting samples x1 , and x21 for X1 and X 2 respectively>;
FOR i:= 1 TO (N-2) DO

BEGIN

IF (f(xi, X1) < f(xiX 2)) THEN k:=1 ELSE k:=2;

Nk:=Nk + 1;
Xk:-Xk U xi; (* Add the sample to the data set of cluster k. *)

END;

Here, Nk, k = 1,2 is the number of samples in cluster k, and
Xk = {Xk. ,..., xk } is the data set of cluster k. A = {x 1,-.. , XN} denotes the
data set being split, and f is the criterion function. We see that the algorithm
consists of two parts. First the starting samples have to be determined, and then
the rest of the samples are to be assigned to one of the two clusters. We will
start with the problems concerning the determination of the starting samples.

4.2.1.2.1 Determination of the starting samples

The performance of the splitting algorithms depends very much on properly
chosen starting samples. We are interested in a splitting resulting in a
maximum distance from the mean of the data set to the mean of the nearest
cluster. Therefore it is reasonable to define two widely separated samples as
starting samples and then let the (new) clusters "grow" towards each other.
Two possible ways of determining these samples are studied. The first and
simplest way of choosing the starting samples is to use the two most distant
samples. Let x1, and x 2, denote the starting samples. Then

0xI, - x2, 1 = max {lxi - x, ll} , i,j = 1, 2,... N. (4.8)

However this method is not robust. If for instance one of the starting samples is
an outlier (to be defined in 4.2.1.3) a bad initial splitting (clustering) may
occur. Therefore a more robust strategy is proposed. This is to choose the two
most distant vectors projected into a vector a. a is parallel to the direction of
maximum variance and is computed according to 4.2.1.1. In other words we
choose the starting samples such that

48

Ila'(xii -x 2,)II = maxf{ia'(x,-X 3)II} , i,j = 1,2,... ,N. (4.9)

This approach is more robust with respect to outliers because a few outliers

have moderate influence on the vector a.

4.2.1.2.2 Splitting of a subclass when the starting samples are given

Let us assume that the starting samples have been found. Now, the problem is

to assign the rest of the samples to one of the two clusters. Let us assume that

N1 samples have been assigned to cluster 1 and N2 to cluster 2 (N 1 + N2 < N).

Furthermore, X, and X 2 denote the data set of cluster 1 and cluster 2

respectively. As stated earlier, a non-assigned sample is assigned to the cluster

producing the smallest value of a given criterion function. In this work six

different criterion functions have been studied. With exception of the first one,

they are all described by Hand [151 in connection with agglomerative clustering.

The criterion functions are as follows:

i) The distance to the starting sample.

fl (x, Xk) = Ix- xk 11

ii) The distance to the nearest sample.

f 2 (x, Xk)=min{lx-xk,l} ,1i=1,-.N

iii) The distance to the furthest sample.

f 3 (x, Xk)=max{lIx-xk,ll} ,i-1,..,Nk

49

iv) The distance to the mean.

h (X, X)= x - k =xk,

v) The distance to the median.

fs (x, X2) = lIx - Med(Xk) I

where the median of the data set is defined as

(M ed (Xk, (1) , X/ k (1))

Med(Xk) = i

Med(xk1 (d)," , - (d))

Med(Xk, (i),..-, Xk (i)) denotes the median of the i'th element of the vectors in

Xk.

vi) The group average distance.

f6 (X,X) = 1 iJX'- Xk, II

The first criterion is equivalent to separate the data set using a hyperplane

given by the equation

1

.'(x,, - x 2 ,) - 1(xl 1 - x 2 ,)'(x,, - x 2,) = 0.
2

Hence it should be very clear that its performance depends very much on

properly chosen starting samples. When using this criterion it is of great

importance to be able to handle problems caused by outliers.

The properties of the other criterions are discussed by Hand [15], and will not

be recapitulated here.

50

4.2.1.3 Outlier handling

Outliers may be considered as "wild" samples, - samples which are far away

from the rest of the samples representing the same class. A somewhat diffuse

definition may be as fellows: Assume a class has samples taken from a

distribution with the density p(r), and the sample zo is to be tested. If p(z) is

very small in a neighbourhood around zo, then zo is considered to be an outlier.

We stated earlier that use of eq. 4.8 should be avoided because it is very

sensitive with respect to outliers. Moreover, outliers do also have influence on

all criterion functions mentioned in the last paragraph. By detecting the

outliers, we may reduce their influence considerably. This may be achieved by

using the following steps:

a) Detect all outliers in X = {x 1 ,- ,XN}.

b) Determine the starting samples by using all samples in X except the

outliers.

c) Assign all non-outliers to one of the two clusters.

d) Assign all outliers.

A Mahalanobis distance based outlier detector will most likely work well in

many practical situations. However, in appendix A an alternative and more

robust outlier detector is presented. This detector is used in the following, but

using a Mahalanobis distance based detector would probably in most cases give

similar results.

4.2.2 Optimization of the initial splitting

The result of the initial, coarse splitting is obviously not optimized with respect

to any criterion. Therefore an optimization algorithm should be applied.

Various optimization criterions may be found in Hand 151. They are all based

on the scatter matrices. The within-class scatter matrix is defined as

51

2 Nk

W -, Z (Xkc - tk) (Xki ,)
k=1 i=1

and the between-class scatter matrix is defined as

2B E (Dk - 4) (Ak- JA)'

k= 1

One popular criterion is the trace of the within-class scatter matrix, tr(W),

which is to be minimized. This is a reasonable criterion for several reasons.

First of all, tr(W) is the sum of variances (and the sum of eigenvalues) of W.

Minimizing this trace is indicating that a good split is found because the sum of

variances is "small", and thus the subclasses are assumed "compact". Secondly,

as shown in appendix B, minimizing tr(W) is the same as maximizing
RAI - I A2 -))l. This inner product may be viewed as the distance between

ttl and 1 when projected into the vector ($2 - 1A) which is also a reasonable

criterion to optimize. However, the tr(W) is little robust. If the data set

contains outliers or some of its samples are "sparsely" distributed, then the

majority of the samples may end up in one of the clusters only. Furthermore,

scaling will have influence on the clustering.

Another popular criterion is the determinant of W. By minimizing JWJ we are

in fact minimizing the product of the eigenvalues. Contrary to the tr(W),

scaling have no influence on the JWI. Except for this feature, the disadvantages

are the same as for tr(W). For a more detailed discussion, see Hand [151.

As an alternative to the scatter matrices, first order statistics may be used. A

criterion performing well is the distance between the mean of the original data

set and the nearest (new) cluster. This criterion, min{ljjt - M111, is to be

maximized. Its main advantage that it is robust to outliers. However, scaling

will have influence on the criterion.

For some criterion functions (and small data sets) it is possible to split the data

set by using a so-called branch and bound algorithm [23]. This algorithm is

able to find the optimal splitting of the data set. However, the computation

52

requirement is great when the number of samples is large. Moreover, if k

denotes a criterion function computed using k samples from the data set, only

criterion functions for which J1 < J 2 < ... < JN can be used. Thus tr(W) may

be used, while min{.lli - 1A11} is not applicable. Therefore we have to use an

algorithm based on the suboptimal evolutionary search principle rather than the

branch and bound algorithm.

The evolutionary search procedure uses the result from 4.2.1 as an initial

clustering. Then each sample is considered as a candidate for reallocation. If

reallocation results in an improved value of the criterion function, the samples is

transferred to the other cluster. Otherwise it remains in its original cluster. One

iteration is finished when all samples have been considered. The algorithm

terminates if no samples are transferred during an iteration. The principle is

illustrated by the following statements:

<Generate an initial clustering according to 4.2.1>;

<Compute the initial value of the criterion function>;

REPEAT

finished:=TRUE;

FOR i:=1 to N DO

BEGIN

<Change the assignment of sample x >;

<Compute the value of the criterion function>;

IF <Improved value of the criterion function> THEN

BEGIN

finished:=FALSE;

<Update the optimal value of the criterion function>;

END

ELSE <Change the assignment of sample x, >;

END;

UNTIL (finished);

53

4.2.3 Evaluation of the different algorithms

We have made simulations using samples taken from two, three and five

dimensional distributions. For each distribution and dimension, we have made

simulations using three different sample sizes (N = 25, N = 75 and N = 150).

We have used distributions containing outliers, "sparse" distributions and

non-symmetrical distributions as well as more "compact" distributions. Briefly

speaking, a distribution is considered as "sparse" if the majority of the samples

in a data set drawn independently from the given distribution are located near

the mean, and the rest of the samples are located both far away each other and

the mean. Contrary, in a " compact" distribution all samples are located near

its mean.

We define

:El = I,

2= diag(4,1)=(4
0)1

and

E3 = diag(1, 16).

The following two-dimensional distributions have been used:

- Two Gaussian distributions with covariance matrices]E and E2

respectively

- Two Gaussian distributions contaminated with an "outlier distribution".

We have chosen a distribution having the density

p(x) = (1 - p)N(I , E2) + pN(Ms , E3), and simulations are carried out for

p = 0.10 and p = 0.25.

54

- Two double exponential distributions with covariance matrices E, and E 2.

- Two negative exponential distributions with covariance matrices E, and

E2c

- Rectangular distribution R(O :1, 0 :1).

- Triangular distribution T(O : 1,0 : 1).

The triangular distribution used has the density function

O2 ,<xl <1and0<X2<XI
0 ,Otherwise.

Furthermore, we define

:E4 = 1,

Es = diag(4, 1, 1),

E 6 = diag(1, 16, 1),

and the following three-dimensional distributions are used:

- Two different Gaussian distributions having covariance matrices E 4 and

Es5 respectively

- Two different Gaussian distributions contaminated with outliers according

two the distribution with the density

p(x) = (1 - p)N(p , Es) + pN(Is , E6) where p = 0.10 and p = 0.25

- Two different double exponential distributions with covariance matrices

E 4 and E5

55

- Two different negative exponential distributions with covariance matrices

E4 and Es

Finally, we define

E7 = I,

E8 = diag(4, 1, 1,1, 1),

Eq = diag(4,4,4,1, 1),

Elo = diag(4,4, 1, 1, 1),

Ell = diag(1, 1, 16,1, 1),

E12 = diag(1, 1, 16,16,16),

and simulations have been carried out for the following five-dimensional

distributions:

- Three different Gaussian distributions with covariance matrices E7, E8

and Eq9 .

- Four different Gaussian distributions contaminated by outliers, with the

densities p,(x) = (1 - p)N(ji , E8) + pN(.u , E,) and

p2(x) = (1 - p)N(tt , E, 0) + pN(IA , E2) where p = 0.10 and p = 0.25.

- Three different double exponential distributions having covariance

matrices E7 , Es and E9 .

56

- Three different negative exponential distributions having covariance

matrices E, Es and Eq.

The following three criterions are used for the evaluation:

a) min{llt&i -gIJ}

b) tr(W)

c) IWI

The motivation for using these criteria is found in 4.2.2. Furthermore, the

criterion

min{ N,, N 2 }

N

is used for evaluating if there is an unbalanced number of samples in the

subclasses.

In the tests involving sample sizes of N = 25 and N = 75, 1000 replications are

used. This is usually sufficient for obtaining reliable statistics. However, only

500 replications are used for N = 150, since in this case 1000 replications would

require around 60 CPU-hours on our ND-570 computer in order to simulate one

distribution. Thus, 2.6 CPU-months is needed for simulating all distributions.

Even with the reduced number of replications, the CPU-requirement is great,

but further reduction is not justified. The reason for this great need of

CPU-time, is to be found in the sorting required by the outlier detector.

The amount of data is so large that it is impossible to present all results here.

Instead general remarks illustrated with some results are given.

57

4.2.3.1 Results from the initial splitting

Let us first present some of the simulation results. In table 4.5 the results from

the three-dimensional double exponential distribution (E = I and N = 75) are

presented. The results from the five dimensional distribution

p(x) = 0.9N(M , Es) + 0.1N(M , Z12) are shown in table 4.6. Both these

distributions are fairly difficult to split, and hence the performance of different

strategies is well illustrated. The tables show the results using the five best

splitting methods with and without outlier detection in order to illustrate the

difference in performance when using outlier detection. Only the results using

the eigenvector based approach for determining the starting samples are shown

because it is much more robust than the approach given by eq 4.8.

We first note that the performance of the algorithms is more or less independent

of both the number of samples and the feature space dimension. This was

expected since there is no mathematical indication that the splitting algorithms

depend on the feature space dimension or the number of samples in the data

set. The ranking of the various splitting strategies is also almost independent of

the sample distribution. Since simulations have been carried out using a wide

variety of distributions, it is reasonable to assume these results to have a quite

general validity.

Not surprisingly the best results are obtained by using the eigenvector based

splitting (E-V-M) from 4.2.1.1. We know that in the Gaussian case the

distance between the means of the parent cluster and the nearest (new) cluster

is maximized when projected into the direction of maximum variance of the

parent cluster. As exptected, the trace of the scatter matrix is also substantially

reduced. Moreover, the strategy does not depend on properly chosen starting

samples. The simulation does also show that it is very robust with respect to

outliers.

The algorithms outlined in 4.2.1.2 are much less robust with respect to outliers.

Therefore, the eigenvector approach for the determination of the starting

samples should be used. Furthermore, the results show the performance of the

splitting criterions from 4.2.1.2 to be in the following order:

58

1) Nearest starting sample, N-S-S (f)

2) Furthest sample, F-S (f3)

3) Group average distance, G-A-D (f6)

4) Mean (14)

5) Median (fs)

6) Nearest sample (f2)

These results do correspond to the findings of Bayne et al [2] and Jain et al [20].

Bayne et al used Monte Carlo simulations to estimate the percent

misclassification of 13 clustering methods for six types of parameterizations of

two bivariate normal populations. The methods were compared using

probability of misclassification and incidence matrices. Jain et al compared six

different hierarchical methods on univariate random data (all samples were

taken from the same distribution) with respect to their tendencies to discover

false clusters.

We also found that outliers and sparsely distributed samples heavily affected

the splitting. If one of these conditions occur, the number of samples in the

clusters becomes very skewly distributed. Hence the min{ jj - 1411} criterion

signals poor splittings. Examples illustrating these findings are shown in

tables 4.5 and 4.6.

59

I

Critfunc Stasam Out det 1nin{n,,N 2} minfl Ai-AII} ktr(W) -IWI

E-V-M - N 0.464 0.783 2.331 0.456

0.027 0.076 0.368 0.224

E-V-M Y 0.467 0.778 2.347 0.401

0.024 0.080 0.373 0.193

N-S-S (4.25) N 0.253 0.466 2.407 0.509

V 0.137 0.197 0.392 0.259

N-S-S (4.25) Y 0.394 0.671 2.356 0.456

0.072 0.122 0.370 0.223

F-S (4.25) N 0.293 0.494 2.459 0.542

0.129 0.172 0.402 0.272

F-S (4.25) Y 0.429 0.646 2.480 0.535

0.052 0.122 0.420 0.288

G-A-D (4.25) N 0.153 0.314 2.470 0.541

0.127 0.191 0.401 0.271

G-A-D (4.25) Y 0.347 0.600 2.377 0.441

0.091 0.143 0.374 0.216

Mean (4.25) N 0.138 0.293 2.457 0.547

0.123 0.193 0.404 0.278

Mean (4.25) Y 0.324 0.570 2.380 0.448

0.104 0.162 0.376 0.222

Table 4.5: Initial splitting results using 75 samples taken from a three dimensional

double exponential distribution (E = I). Both mean and standard

deviation of ech criterion are tabulated for each splitting function.

60

Crit func Sta sam Out det in{%iN 21 min{llp, - AIJ} Xtr(W) kIWI
E-V-M - N 0.431 1.586 11.897 68.142

0.056 0.260 3.528 146.473

E-V-M Y 0.453 1.652 11.903 42.490

0.034 0.228 3.522 79.348

N-S-S (4.25) N 0.237 0.997 11.520 50.508

0.158 0.474 3.088 133.274

N-S-S (4.25) Y 0.376 1.413 11.999 53.054

0.087 0.326 3.491 105.082

F-S (4.25) N 0.259 0.996 11.975 60.208

0.154 0.420 3.265 133.546

F-S (4.25) Y 0.416 1.427 12.398 63.225

0.061 0.297 3.732 124.674

G-A-D (4.25) N 0.188 0.852 11.336 38.534

0.153 0.480 2.873 74.997

G-A-D (4.25) Y 0.366 1.366 11.979 44.978

0.094 0.355 3.497 84.484

Mean (4.25) N 0.163 0.783 11.336 37.550

0.143 0.470 2.825 70.910

Mean (4.25) Y 0.321 1.256 12.018 47.999

0.116 0.424 3.497 100.798

Table 4.6: Initial splitting results using 25 samples taken from a five dimensional

Gaussian distribution contaminated with 10% outliers. Both mean and

standard deviation of each criterion are tabulated for each splitting

function.

61

4.2.3.2 Results from the optimization

Tables 4.7-4.12 show examples of simulation results obtained by using the

various optimization criteria. In tables 4.7-4.9 the results using the three

dimensional double exponential distribution is shown. In table 4.7, the

min{iltsi - 1AIJ} criterion is used, tr(W) is used in table 4.8, and finally the 1W!

criterion is used in table 4.9. In the same way, the results using the five

dimensional Gaussian distribution contaminated with 10% outliers are shown in

tables 4.10-4.12.

Simulations are made for all three optimization criterions tr(W), 1W! and

min{, - 1}, and for all combinations of sample sizes, dimensionalities and

distributions described previously in this section. Each criterion is tested using

various initial splittings. The purpose has been to study:

- Which of the three criterions have the best overall performance,

- if optimization can compensate a bad initial splitting,

- if optimization significantly improves good initial splittings (splittings

produced by the eigenvector based method).

For each optimization criterion, the following six different initial splitting

strategies are tested.

- Eigenvector method without outlier detection

- Furthest sample method with and without outlier detection

- Group average method with and without outlier detection

- Mean method without outlier detection

The eigenvector method is only tested without using the outlier detector

because its performance is almost unaffected by outliers. The mean method is

62

also used without the outlier detector due to its very poor initial splittings. The

two other criteria were tested both with and without the outlier detector.

Also here, we observe that the performance of the algorithms is almost

independent of the number of samples used in the data set as well as the sample

space dimension.

Moreover, if the data set contains outliers and/or the samples are sparsely

distributed, tr(W) and IWI often give quite unbalanced subclasses with respect

to the number of samples. The high standard deviation of the miiinf NI,L 2
N

criterion when using tr(W) or IWI also indicates that the splitting performance

is very sensitive to the actual data set. Thus the reliability may be poor when

using tr(W) or IWI as optimization criterions. These effects are avoided by

using the min{I a, - IaI} criterion, which seems to have the best overall

performance.

Furthermore, the criterion based on first order statistics is found to be little

affected by the quality of the initial splitting, and the evaluation criteria

indicate good splittings in all simulations. The criteria based on the scatter

matrix on the other hand seems to be very sensitive to the initial splitting.

These optimization procedures are performing best when using the best initial

splitting, and the worst initial splitting strategies produce very poor
"optimized" performance. Thus, the min{Iaj - kJI} criterion is the only

(evaluated) criterion which is able to improve a bad initial splitting significantly.

Finally, we found that the difference between the initial splitting based on the

eigenvector and the optimized splitting is only marginal. This should indicate

that the eigenvector method produces good splittings, and thus the

optimization procedure is hardly needed in a practical situation.

From the discussion and the illustrations, it should be clear that the eigenvector

method is able to split a data set satisfactorily. Furthermore, if optimization of

the splitting is required, the min{Aj - IAI} criterion should be used.

63

Ini spl Out det mn'N min{jij - tjll} -tr(W) -IWI

E-V-M N 0.493 0.826 2.337 0.448

0.001 0.069 0.367 0.219

F-S Y 0.493 0.822 2.344 0.423

0.001 0.070 0.368 0.205

G-A-D Y 0.493 0.824 2.340 0.421

0.001 0.069 0.366 0.203

F-S N 0.493 0.819 2.349 0.443

0.001 0.070 0.371 0.216

G-A-D N 0.493 0.821 2.345 0.436

0.001 0.071 0.368 0.211

Mean N 0.493 0.821 2.346 0.436

0.001 0.070 0.372 0.211

Table 4.7: Optimized splitting using the optimization criterion based on first or-

der statistics. The data set contains 75 samples taken frorkl a three

dimensional double exponential distribution (Z = I). Both mean and

standard dewiation are tabulated.

Ini spl Out det BINPN2} mn{If j, - ,II} ktr(W) -LWj

E-V-M N 0.391 0.696 2.290 0.402

0.084 0.127 0.357 0.194

F-S Y 0.389 0.689 2.298 0.394

0.082 0.122 0.362 0.189

G-A-D Y 0.374 0.668 2.299 0.392

0.087 0.132 0.359 0.187

F-S N 0.330 0.602 2.311 0.419

0.127 0.189 0.369 0.212

G-A-D N 0.234 0.453 2.369 0.464

0.159 0.250 0.399 0.253

Mean N 0.220 0.431 2.385 0.477

0.161 0.255 0.404 0.261

Table 4.8: Optimized splitting using the tr(W) criterion. The data set contains

75 samples taken from a three dimensional double exponential distri-

bution (E = I).

64

Ini spl Out det mi-nNN 2' min{I,,-,sL} -tr(W) IWI

E-V-M N 0.410 0.706 2.326 0.369

0.067 0.108 0.373 0.176

F-S Y 0.410 0.689 2.361 0.360

0.063 0.103 0.377 0.168

G-A-D Y 0.399 0.677 2.355 0.362

0.075 0.119 0.374 0.175

F-S N 0.362 0.625 2.358 0.386

0.110 0.158 0.381 0.197

G-A-D N 0.292 0.523 2.382 0.406

0.143 0.208 0.389 0.220

Mean N 0.286 0.513 2.385 0.411

0.145 0.209 0.389 0.223

Table 4.9: Optimized splitting using the IWI criterion. The data set contains 75

samples taken from a three dimensional double exponential distribu-

tion (E = I).

Ini spl Out det mni{N,,N 2} min{II,.j - jil} ktr(W) -IWI

E-V-M N 0.480 1.744 11.946 58.387

0.003 0.202 3.458 130.897

F-S Y 0.480 1.739 11.971 49.916

0.003 0.199 3.455 95.886

G-A-D Y 0.480 1.741 11.958 47.297

0.003 0.202 3.445 81.275

F-S N 0.480 1.728 12.010 54.085

0.003 0.205 3.472 106.906

G-A-D N 0.480 1.726 12.018 53.072

0.003 0.207 3.472 107.789

Mean N 0.480 1.726 12.017 52.881

0.003 0.207 3.470 107.678

Table 4.10: Optimized splitting using the optimization criterion based on first

order statistics. The data set contains 25 samples taken from a five

dimensional Gaussian distribution contaminated with 10% outliers.

65

Ini spl Out det ,,'NN2' min[II,., - ,ill} -tr(W) -Lw
E-V-M N 0.340 1.382 11.318 38,424

0.142 0.455 3.019 68.316

F-S Y 0.355 1.410 11.516 39.444

0.124 0.406 3.172 69.155

G-A-D Y 0.347 1.385 11.537 39.322

0.123 0.415 3.178 71.104

F-S N 0.236 1.043 11.158 35.633

0.126 0.551 2.862 63.479

G-A-D N 0.193 0.903 11.190 35.994

0.162 0.539 2.852 65.241

Mean N 0.180 0.857 11.242 37.555

0.159 0.535 2.876 67.252

Table 4.11: Optimized splitting using the tr(W) criterion. The data set contains

of 25 samples taken from a five dimensional Gaussian distribution

contaminated with 10% outliers.

Inispl Out det ran'NN mnin{[jj. i_- j.s} -tr(W) -L[WIN N

E-V-M N 0.397 1.427 12.137 32.396

0.088 0.314 3.447 55.457

F-S Y 0.406 1.407 12.404 32.264

0.071 0.303 3.568 62.226

G-A-D Y 0.390 1.402 12.217 31.978

0.080 0.312 3.497 54.032

F-S N 0.286 1.083 11.879 30.884

0.164 0.451 3.166 60.341

G-A-D N 0.226 0.950 11.664 31.273

0.163 0.481 3.094 57.670

Mean N 0.219 0.920 11.728 31.486

0.162 0.481 3.098 57.729

Table 4.12: Optimized splitting using the IWI criterion. The data set contains

of 25 samples taken from a five dimensional Gaussian distribution

contaminated with 10% outliers.

66

4.3 Generating piecewise linear classifiers

Earlier we defined a piecewise linear classifier as a classifier where the

hypersurface separating two classes is piecewise linear. In this section we will
see how the subclass information may be used for generating a piecewise linear

classifier. Each subclass is represented by a data set containing all samples x for

which x E Si, and belongs to wi. We will use ni weight vectors for representing

wi (one weight vector for each subclass). The discriminant function will be

defined as

9i(x) = max{aijy} , = 1,2, (4.10)
3y = [1,x']

where aij is the weight vector of the j'th subclass in wi. Now, x is assigned to

the class for which gi(x) is maximum. It may be shown that 4.10 is a piecewise

linear classifier [5].

In the next four subsections we will study various approaches for generating

piecewise linear classifiers based on the subclass information.

4.3.1 The nearest submean classifier

This classifier assigns a sample x to the class with the nearest subclass. Let the

subclasses a,, a2, "-, a, be defined according to 4.4. Moreover, ,ij denotes the

mean (in feature space) of a,. Then x is assigned to W(ak) if

11X-/ Akd = min{Ix- siIj} , i = 1,2, (4.11)

where w(ak) returns the class of ak. It is easy to verify that the nearest

submean classifier (NSMC) is piecewise linear and may be defined in accordance

with 4.10 [5]. The weight vectors are then defined as

I t"fai -- ~ , A

67

when using an augmented feature vector representation. Initially, we did not

expect this classifier to be able to adapt itself sufficiently to the data set. It is

also affected by scaling the axes. Therefore other strategies have been

developed.

4.3.2 Piecewise linear classifiers based on the mean squared approach

A more advanced approach is to generate a piecewise linear classifier which is

based on mean squared error (MSE) techniques. Also in this case we are

defining one weight vector for each subclass, and it is quite easy to generate a

classifier using a standard MSE algorithm [39J. First the n subclasses are

defined according to 4.4. Then the weight matrix

A= [a,:a 2 :a3 : -.. "a]

is chosen so that the cost function

J = tr {(YA - B)'(YA - B)} (4.12)

is minimized. The matrix Y = [y, "Y2 "": yNv] t , dim{Y} = N x d, contains

the samples in the data set. Nj samples represent a;, and totally there are

N = N1 + N 2 + "-. + N, samples. Moreover, the samples from the same

subclass are assumed to be contiguously stored in Y. That is; the first N1

samples belongs to a,, the next N2 samples to a 2, and so on. B is a cost matrix

which is being considered later. The solution minimizing 4.12 is given as [391

A = Y+B

= (Y'Y) -Y'B (4.13)

where "+" denotes the pseudo inverse. The cost matrix B may be interpreted

in two different ways [39]. First it may be associated with the cost function used

68

for calculating Bayes risk. Secondly it may be interpreted as a set of vertices in

an Euclidean space, to which the samples in Y are mapped. However, in this

thesis we will only consider the latter interpretation.

Let

where

A T
Bi = A

and

Ali

A2i

Now, the samples belonging to ai are attempted mapped into the point Aji

using the weight vector aj, and the weight vectors in A are chosen so as to

minimize the squared sum of mapping the samples Y into the vertices given in

B. The problem is how to determine the elements in B. Several methods have

been suggested [39]. One simple possibility is to select the following cost:

Aj = {) (4.14)0 , otherwise,

69

which means that the samples representing a, are tried mapped into the point 1

and the rest of the samples into the point 0.

We have also tried to use the distance between the means of the subclasses in

order to make a more reliable classifier. One simple approach is to let the

samples be mapped into points proporsional to the distance between the

subclasses, i.e. we will propose the following risk function:

A= -di = -I,&, - ,.l W # W(a1) (4.15)

10 ,otherwise.

Other and more complex ways of using the distance information for generating

the coefficients A j have also been studied. However, in all tests the

MSE-classifier using 4.14 for generating Aij have been superior to the distance

based ones. Thus, these methods are not considered in the following.

4.3.3 Determination of a piecewise linear classifier using a weighed

MSE-approach

When using the mean squared error approach (MSE), one tries to map all

samples onto a set of points defined by elements in the "risk matrix" B for a

given subclass a,. We want to improve the MSE-classifier. Then, it might be

useful to reduce the number of samples involved in the determination of each

weight vector, or generally to weigh the samples from the different subclasses.

First, it is no reason to use the samples representing aj, j $ i, w(aj) = w(a,)

when determining a (the weight vector representing a1). Secondly, we will also

weight the contribution to the mean squared error from the various subclasses

differently. This is done in order to make each weight vector sensitive to

selected (sub)classes only.

In the following, we will use A, B and Y as defined in 4.3.2. Moreover, we will

define Z as

70

Z = (YA - B) t(YA - B).

In the MSE-approach described previously, we wanted to minimize

n

J = tr{Z} = EZkk. (4.16)
k=1

It is easy to see that

n

min {tr{Z}} = Zmin{Zkk}. (4.17)
k=1

Minimizing 4.16 is thus the same as minimizing each diagonal element in Z

separatly. Therefore, in the following we will study the determination of the

k'th weight vector only. Using the standard MSE-procedure, this corresponds

to determine the weight vector ak minimizing

2

n
d

Zkk = E E EYiAk (4.18)
j=1 I:a(yl)=Otj

yfak

where Yj is the l'th sample vector which is stored in row no. 1 in the sample

matrix Y. Furthermore, a(yi) returns the subclass which yj belongs to. For

details about the vector Ak, see section 4.3.2. Moreover,

ak = :Ak dkI

is chosen in order to minimize the squared sum.

By not including the samples from a,, w(ak) = W(aj), we are reducing the

number of samples which is mapped into the point 0. Thus, we achieve the cost

function

71

Jk = [yta; - A3 k] 2 (4.19)

j = k ha(y)

jW(Cfj) #6 W(cr,)

This cost function may be generalized by weighting the contribution to the

squared error from each subclass. Then we obtain the following cost function

n

Jk , - jk E [yjak- Ajk] ,/jk -- 0. (4.20)
i= l :o (Yj)=a'

We can easily see that by selecting1 3ik = 1 V j we obtain 4.18 and by defining

{ 1 , j=korw(ai)#w(ak)

131k = 0 , otherwise

we will obtain 4.19.

We wanted to test whether it was desirable to weigh the squared error

contributions from the nearest subclasses more than the most distant ones. This

may be obtained by letting /3 jk be inversely proporsional to dik, and therefore

we have

j k : lkk (4.21)

which is also in accordance with 4.18 and 4.19. The actual choice of Ojk is hardly

important. Intuitively, one possibility is to let/ 3kk = 1, and then in accordance

with 4.21 require 0 < 3jk _< 1. This requirement can be fulfilled by defining

,, , W(aj) $ w(ak) (4.22)
0 ,otherwise

72

where p > 0 and dk is the distance from the mean of ak to the mean of the

nearest subclass representing another class. We see that p = 0 results in 4.19.

Furthermore, when p is "great", then

1 ,j kor d'k=d,k,

;L=-. 0 , otherw ise .

We will now derive the weight vectors minimizing 4.20. The gradient of the cost

function is

VJk=2[_jk (ay - .jk) Y1 (4.23)

Now, the weight vector minimizing 4.20, is the one for which VJk = 0. We

obtain

1n
ljL. y yy kYak Z -#jkAk - (4.24)

j=1

y, y/

Thus 4.24 implies

a = y-y, (4.25)

which is the solution to our minimization problem.

4.3.4 Generating a piecewise linear classifier from a set of hyperplanes

As mentioned, in this approach we first define hyperplanes separating some of

the (sub)classes. Then the hyperplanes are used for generating a piecewise

linear classifier. Three problems have to be solved:

73

a) How to select the pairs of (sub)classes to be separated by a hyperplane,

b) How to generate a linear classifier,

c) How to use the linear classifiers for generating the piecewise linear

classifier.

4.3.4.1 Determining the pairs of subclasses to be separated

Let us first assume the density of each class and the mean og each subclass to be

known. Let us also for a while assume p(xw(a)) to be monotonic along a line

going from the mean, jPj, of the (sub)class (we are only using this assumption for

illustration purposes).Now, two (sub)classes, say a, and aj, are assumed to need

separation if the optimal hypersurface is intersecting the line eij going from 11i

to pj (uu # s, is assumed). This proposal may be illustrated with the following

statements in "quasi-Pascal". We are also here assuming n subclasses, that wi

is split into ni subclasses. Hence n - n, is the last subclass number belonging to

w-1. Moreover, let f(i) denote the last subclass(number) belonging to w(af).

FORi := I TO n-n, DO

BEGIN
FOR j:= f(i) + 1 TO n DO
BEGIN

<Compute x', of Ii (if it exists) for which

P(W(a,))P(Xii1(a;)) = P(W(aj))p(x, 1I(aj)) >;

IF < x exists> THEN b:=TRUE ELSE b:=FALSE;
k:= 1;

WILE ((k < n) AND (b)) DO

BEGIN
IF ((k <> i) AND (k <> j)) THEN

BEGIN
IF (P(w(a,))p(x~ijw(ak)) _ P(w(a))p(x.ijw(aj))) THEN

b:=FALSE;
END;
k:= k + 1;

END;
IF (b) THEN <Compute a hyperplane separating aj and ai >;

END;
END;

74

Estimation of the "density" function of the subclass may lead to poor

performance because in many cases only a few samples are contained in parts of

the sample space.

Alternatively, the concept of the Mahalanobis distance may be used. This

distance is defined as

DE (xi, x2) = (xI - x 2)t Z-1 (XI - x 2)

where E is a positive definite matrix. The decision algorithm given previously

has to be slightly modified. First we determine the point xj, on the line liA for
V

which

D,(xii, w) =DL,(i j)

where Z; denotes the covariance matrix of aj. Then, a hyperplane should be

generated if

mnax {E,(iIA)I> Dj,(iA), k~
k

7

It should be noticed that no use of a priori information is shown above.

However, this information is used ad hoc by simply weighing the Mahalanobis

distance with the a priori probability. If the samples of the subclasses are drawn

from Gaussian distributions, then using the Mahalanobis distance in the

decision equals the previous strategy. Equal a priori probability for all classes is

t h en assu med.

75

The Mahalanobis distance strategy does not detect that subclasses often have a

rather bounded sample space. Therefore, non-interesting subclasses with large

variances may cause trouble even when they are located far away from the

interesting subclasses. This case is illustrated in figure 4.6 where the problem of

deciding if a hyperplane should be generated for separating the subclasses a 2

and a4 is shown.

/

w(a 1) U(a4), i ,2, 3

Figure 4.6: An illustration of a situation where the Mahalanobis distance strategy

fails. The resulting classifier is based on discriminating a1 and a 4 only

(as illustrated with the solid line). However, a clearly more reliable

classifier is obtained if it is based on discriminating both a 2 and a 4

as well as a 3 and a 4 (as shown with the dashed lines).

We see that Dr,, (x2 4 , P1) is less than DE2(x 24, I 2). (DEr, (x34, L1) is also less

than D, 3(x4, A 3).) Hence a very poor decision about which subclasses to be

separated will be made, and the resulting classifier will most likely provide a low

performance. If we instead decide to combine two hyperplanes; one separating

a 2 and a 4, and one separating C93 and a 4 , the resulting classifier may be clearly

more reliable, as illustrated in the figure. Thus, we will now propose another

approach which has been found to work better than the Mahalanobis distance

in many examples.

76

This alternative approach to the Mahalanobis distance is based on the projected

(empirical) cummulative distribution. Let ai denote the standard deviation of

the samples projected into the vector b (in other words: ai = bt E b). Assume

for a while tWe samples within a subclass to be Gaussian distributed. The

projected cummulative distribution (y = b t x) is given as

~b'x 1

F(b'x)= - dz. (4.26).,oo 2 aiedz.4.)

Since the Mahalanobis distance also may be written as

S(x, b(x - Iai) 2 (4.27)

one may see that there is a connection between the Mahalanobis distance and

the projected cummulative distribution. Hence it may be used in the same way

as the Mahalanobis distance. However, using the projected cummulative

distribution provides a different distance measure. Intuitively, it is more closely

related to the actual distribution than the Mahalanobis distance. Thus, it may

manage to handle "difficult" situations (e.g. situations where the variance(s) of

the subclasses differs much from subclass to subclass) satisfactorily. Contrary to

the Mahalanobis distance, it does also detect bounded sample spaces. Hence, it

is more or less unaffected by situations similar to figure 4.6. However, one may

expect the projected cummulative distribution method to produce somewhat

unreliable decisions when only a small number of samples are representing a

subclass. Thus, a relatively large design set is necessary if a large number of

splittings is required.

The decision algorithm becomes very much similar to the Mahalanobis distance

based one. Let us also here assume that ai and aj are to be tested. The point

xij is now defined as the point of equal projected cummulative probability

(projected into a vector parallel to the direction of ,ij), and it is to be

determined first. Next, for each ak, k 0 i,j, we examine the projected

cummulative probability (projected into a vector parallel to the line going

between xj . and Ak) in order to make the decision if a hyperplane is to

discriminate a, and aj. Even though the subclasses are not strictly defined in

77

general, we will in the following assume so (i.e. assuming the class densities and

the (sub)sample spaces to be known) in order to improve the understanding of

the strategy.

Let pb(yjcli) denote the "density" given the subclass when projected into the

vector b. As mentioned, the point xii, which is the equal projected

cummulative probability point (on tij), has to be determined first (a solution is

assumed to exist). In other words:

0P(a)Pb(yaj) dy = P(oty)pb(yli) dy = Pij (4.28)t~ J --o)o~ ~ a)d

where b = (tt'-Jti) This is illustrated in figure 4.7 for the situation where

P(ai) = P(a,).

C/li

p (yPy> y'laj) I P(y < y'Ja)

P3 - -]y

Figure 4.7: Determining xii using the projected cummulative distribution.

Now, let us define bk as

78

bk = (xi, - Ak)
Ix,j - "Ak I

If

max P(ak)Pb,(yjak) dy > Pij k $ i, (4.29)

then a1 and aj is assumed not to need separation. In the Mahalanobis distance

approach, this corresponds to the situation for which the Mahalanobis distance

between Ak and xji is less than the Mahalanobis distance between ij (or ;t1)

and xii.

The strategy is implemented in the following algorithm:

FOR i:= 1 TO n- n, DO

BEGIN

FORj:=f(i)+1 TOnDO

BEGIN

<Compute the point xij of ei, (if it exists) according to eq. 4.28>;

IF < xi exists> THEN b:=TRUE ELSE b:=FALSE;

k := 1;

WHILE ((k < n) AND (b)) DO

BEGIN

IF ((k <> i) AND (k <> J)) THEN

BEGIN

IF <eq. 4.29 holds> THEN b:=FALSE;

END;

k := k + 1;

END;

IF (b) THEN <Compute a hyperplane separating ai and a, >1

END;

END;

79

The probabilities used are of course estimated. Let yb = {yi, . " YiN, } denote

the data set representing ai (i.e. Xi) projected into the vector b, and also

assume yi, < Y 2 < ... < YiN,- Then a reasonable estimator for the projected

cummulative distribution is

i~~N ,(v- I
Pb(y>y'lai)NNi (4.30)

where I is the largest integer for which yi, < y'.

This algorithm is quite robust and it has been found to work pretty well.

However, it is one !ituation where it will not work. A ssume the subclasses to be

well separated. This corresponds to situations for which Yin, < Yh, where

YiN, $ E ', Y Ji E Y]b, and b. Then we will find that Pij = 0, and we

only know that xij should lie between xi,, and x 1 . The solution to this

problem is to use estimates of the density of the subclasses based on the k

nearest neighbour method in stead of the projected cummulative distribution.

This can be done because for any point x on eij for which btx < min{yi, } (or

btx > max{yik }), the estimate is changing monotonically with btx.

4.3.4.2 Generating a suitable linear classifier

When we have decided which pairs of subclasses are to be discriminated by a

hyperplane, these hyperplanes have to be constructed. During the years, several

algorithms have been developed for this purpose [8].

Clark and Gonzalez [4] have recently presented an interesting linear classifier for

the two-class problem. Their approach minimizes the number of

80

misclassifications. Thus, it minimizes the estimate of the error rate (based on

the training samples) if P(w,) = N, i = 1, 2. However, it would have beenNj+N2

preferable to obtain a classifier minimizing the error rate regardless of the

a priori probability.

Gallant [14] has proposed an algorithm called the pocket algorithm (PA). This

is based on an error correction procedure, and it is minimizing the number of

misclassifications when the number of samples reaches infinity. The pocket

algorithm derived its name from the process of saving "in your pocket" the

weight vector with the longest consecutive run of correct classification trials in

the error correction procedure. The classes wi and wj are to be separated, and

the algorithm works as follows:

a := 0; (* a is the current weight vector. *)

run- of- corr. class := 0; run- of- corr_ class. p := 0; it := 0;

REPEAT

<Randomly pick a training sample Xk >; it := it + 1;

IF <correctly classified> THEN
BEGIN

run- of- corr_ class := run- of. corr_ class + 1;

IF (run- of- corr_ class > run- of. corr_ class- p) THEN

BEGIN

a, := a;

run- of- corr_ class- p := run- of. corr_ class;

END;

END

ELSE BEGIN

IF (w(xk) = wi) THEN a:= a + xk

ELSE a := a - xk;

END;

UNTIL (it > itmax);

Unfortunately the (design set based) error rate estimate is generally not

decreasing monotonically as the number of consecitive correctly classified

81

samples is increasing. Moreover, it does not exist any known bound on the

number of iterations needed for producing sufficiently good weight vectors.

Furthermore, the error rate estimate is more preferable as minimizing criterion

than consecutive the number of correct classification trials. Therefore we modify

the pocket algorithm slightly.

It is known that only a finite number of different weight vectors can be reached

using the error correction learning [14]. Therefore, by investigating the error

rate estimate of the design set (or generally a cost function) instead of the

number of consecutive correctly classified samples we are able to minimize the

design set based error rate estimate. Moreover, it is easy to see from the

algorithm to be presented that the design set based error rate estimate is

decreasing monotonically with increasing number of iterations. Thus, the

algorithm will always return the best weight vector (the weight vector giving

the lowest design set based error rate estimate) of those which have been

evaluated. This modified pocket algorithm (MPA) is as follows:

a := 0; (* a is the current weight vector. *)
iP :=/3 :_ 1; it :=0;

REPEAT

<Randomly pick a training sample xk >; it := it + 1;

IF <misclassified> THEN

BEGIN

IF (a(xk) = a) THEN a :=a + xk

ELSE a := a - Xk;

IF (P, </Pp) THEN

BEGIN

ap:= a;

END;

END;

UNTIL ((it > itmax) OR (P =0));

The price to pay for this inprovernent is increased cornplitat ion time.

82

As an example, let us compare the PA and MPA using the data set shown in

figure 4.8. In this example w is represented by 150 samples taken from a

N (0, [l 0]) distribution, and w 2 is represented by 150 samples taken from

a N], distribution. In figure 4.9 the error rates (based on the training

samples) are plotted as a fun, on of number of iterations in order to show how

the classifiers converge.

1 . 6 1 2 00 1 0

0 0 0
0 0

0 00 0 0 0

0 00

a 00

0 0 00 0 0 0 X X X X
0 00 0 0000 0X X

0 0~ 00 00X X0 o

0 i . 00 X~ 1%-)V X

~0 0
0

0~0 X

o ~ ~ ~ t 00 VA Kj)c

0 a 0 0 0 0 0 X

0 0 X
o 0

0

0 00 0

00 0

0 0 0' 0 0 X X" X

0

0 0

i 0 0

Figure 4.8: The samples representing the classes.

83

n-0

o" \
o"

o

o-

L-og (No.

Figure 4.9: The design set based error rate estimate for the PA (solid fine) and

MPA (dashed line) based on the data set in figure 4.8 as a function

of the number of iterations.

84

As we see from the figure, the error rate of the MPA is decreasing

monotonically, and moreover the MPA performs better than the PA.

4.3.4.3 Computing the piecewise linear discriminant function

In 4.3.4.1 and 4.3.4.2 we have described algorithms for finding the pairs of

subclasses which have to be separated by hyperplanes, and for generating the

actual hyperplanes. Having obtained this knowledge, a piecewise linear classifier

is to be generated. Let us assume that m pairs of subclasses should be

separated, and that the m hyperplanes have been generated. Furthermore, let

aikj, define the hyperplane separating the subclasses aj, and aik (1 < k < n

and 1 < ik < n). Since a'. is separating these two subclasses, it must be a

solution of the equation ai, - aj, = a ,h. Now, we want to find the weight

vectors a,,-., a,, (one for each subclass) by solving the following set of equations

aj, - aj, = a,a 2 - al - a1

ai2 - aj2 - a'22 (4.31)

ai,,, - aj,. = aij.

Unfortunately, we are not guaranteed a unique solution of 4.31. In fact, we may

also eithcr have an infinite number of solutions, or a solution does not have to

exist at all. In the first situation, we are interested in finding one of the possible

solutions, and in the latter one, the best thing to do is to use the solution

minimizing the mean squared error. It may be shown that an "optimal"

solution (with respect to the least square minimum norm) can be obtained in all

these situations by using the singular value decomposition method (SVD) [27].

For details, see appendix C where we have given a brief presentation of the

method applied to our problem.

However, difficulties will occur if at least one subclass is not involved in the

hyperplane separation. The solution to this problem is simply to detect all tlhese

subclasses, mark them as passive, and not include therm in 4.1(1.

85

4.3.5 Cumparison of the performances of the different classifiers

In 4.1.4 it was argued that the only way of comparing the two suggested

splitting strategies is through Monte Carlo simulations. The same argument is

valid for the evaluation of the performance of the different classifiers. We have

made simulations using the same distributions as in 4.1.4. Moreover, all

classifiers derived earlier in 4.3 have been tested, in other words

- The nearest submean classifier (NSMC),

- The mean squared error classifier (MSE),

- 4 classifiers based on the weighed mean squared error approach (W-MSE),

- The hyperplane based classifier (HPC).

Unfortunately it is impossible to present all results from the simulations.

Therefore examples will be used to illustrate the main results.

We found the ranking of the classifiers (based on the performance) to Le more

or less independent of the number of samples in the design set.

First, the W-MSE classifier was evaluated. We have tested 4 different values of

the power (p - see 4.22) in order to find how much the contribution to the

squared error from each subclass should be weighed. We have made simulations

using p = 0, 1, 1,3 and we found that the best classifier is produced for p = 0.

Moreover, we found the performance to decrease monotonically with p. This

fact indicates that the contribution from the different subclasses cxi for which

W(ai) : W(ak) should be almost equally weighted when determining ak. In

figure 4.10 these results are shown. The samples representing w, and w2 are

drawn from Gaussian distributions (d = 0.5, - = 600) in accordance to 4.1.4.

Moreover, 25 samples are representing each class.

Next, the best W-MSE classifier (p = 0) is tested against the MSE, the NSMC

and the HPC. As expected, we found the W-MSE classifier to perform better

86

p 3

i p-1

o p -0.5

p.0

a

Z0 3.0 '.0 0.0 e.0 1.0 8.0
Mo. *.,cL.

Figure 4.10: Mean performance of the W-MSE classifier as a function of number

of subclasses. 25 samples are representing each class and they are

drawn from Gaussian distributions (d = 0.5 and -/ = 600).

than the MSE classifier. This is reasonable becausd all unnecessary

contributions to the squared error are removed. However, the mean squared

error based approaches do not perform as good as the two others. The

simulations show the NSMC (section 4.3.1) to perform quite well, and it adapts

quite fast to the data set. The disadvantage is that the classifier is based only

on the the mean of the subclasses. Hence, the classifier may not be well

adjusted to the data set for a given number of subclasses. This fact is easily

illustrated by considering the situation where the direction of the vector

perpendicular of a hyperplane separating two (sub)classes (e.g. ac and a,)

satisfactorily, differs significantly from the direction of the vector 1i - J-

The HPC (section 4.3.4) is found to do a good job. It adapts nicely to the data

set, often using only a few subclasses. However, in situations where the weight

vectors cannot be found exactly, we are not guaranteed a well performing

classifier (for details see section 4.3.4.3). This effect is seen in the three class

tests where the NSMC adapts somewhat faster to the data set than the HPC.

However, the HPC is superior to the MSE based classifiers in this case too.

87

In figures 4.11-4.13 these findings are illustrated. In figure 4.11 the classes are

Gaussian distributed (d = 1.0, 7 = 600), and in figure 4.12 the classes are

Gaussian/banana distributed using d = 1.5. Finally in figure 4.13 the results of

the three-class problem using d = 1.0 is shown. All plots are based on using 150

samples for representing each class in a given replication.

NSMC

Z.0 9.0 '4.0 9.0 6.0 1.0 0.0

Figure 4.11: Mean performance as a function of number of subclasses using Gaus-

sian distributed samples. 150 samples are representing each class in

a given replication, d = 1.0 and y = 600.

88

to

WMSE

O. S.E

~NSMC

HPC

12.0 - S.0 4 0 .0 6.a . .

Figure 4.12: Mean performance as a function of number of subclasses using Gaus-

sian and banana distributed samples. 150 samples are representing

each class in a given replication and d = 1.5.

NSMC

"s.0 *4.o 6;.0 6 .0 1. SO .a6.0

M, m~o3 ..

Figure 4.13: Mean performance as a function of number of subclasses in the three-
class problem. 150 samples are representing each class in a given

replication.

89

4.4 Determining the final classifier

According to chapter 3, the splitting process is at some time to be terminated.

For example, one may stop the splitting when the performance of the classifier

is sufficiently good. However, there is one great problem: The performance does

not genera.lly increase monotonically as the number of subclasses is increasing.

Therefore we have to continue the splitting until either the maximum permitted

number of subclasses is reached, or we are convinced that the performance will

not be significantly improved by further splitting.

4.4.1 Termination of the splitting

First, the maximum number of subclasses, and hence the maximum number of

discrimination functions of the classifier is to be determined. Afterwards, the

splitting proceeds until

a) the maximum number of subclasses is reached,

b) no subclasses can be split according to a certain criterion,

c) the greatest contribution from a subclass to the performance is sufficiently

small.

When the number of samples in a given subclass is small, it is difficult to do any

reliable splitting. Therefore, the second criterion is defined. The third criterion

terminates the splitting when it is reasonable to believe that little reduction in

the design set based error rate estimate is gained by further splitting.

4.4.2 Weighing of P, and the number of subclasses

In this proposal, we will repeat the splitting until we have at most n < n,,

subclasses. In each iteration a criterion combining the design set based error

rate and the number of subclasses, f(P (i), i) is computed. Pe(i) denotes the

design set based error rate of the classifier used in iteration i - c. The classifier

using k subclasses,

90

f(Pe(k), k) =m {(in i) i = c, n (4.32)

is assumed to be the best classifier to use. Now, the problem is how to choose f.

One reasonable strategy is obtained by adding Pe and a contribution involving

the number of subclasses together. A possible criterion may be as follows:

f(P,1(i),i) = (p"(i)) q + (n-C - ,C 0 < q < 1 (4.33)
nMd. - C

The disadvantage of 4.33 is its sensitivity of nmmt. Thus, one is to be careful

when using it.

Another strategy is to use

f(P6(1),i) = (i-c+ 1) P5(i) , q> 1. (4.34)

It is also easy to see from 4.34 that the criterion becomes more independent of

the number of subclasses when q is increasing. However, q should not be too

small. Then this strategy will obviously weight P, too little and the number of

subclasses too much. For example, P,(c) = 1.0 will give almost the same

criterion value as Pe(c + 9) = 0.1. Eq 4.34 seems to be a reasonable criterion to

use. We also see, as a special case, that we will choose the classifier having the

smallest design set based error rate if q is large. However it is important to

notice that P, is not a good error rate estimate. Therefore, it is reasonable to

assume that two classifiers, for which Pe(i) Pe(j) and /S(i) > P,(j),i < j, do

have almost the same error rate. Hence P,(i) is preferable since Pe(i) zz Pe(j)

and less subclasses (and thus weight vectors) are involved. This leads us over to

another strategy.

91

4.4.3 Determining a sufficiently good classifier

We are using the performance in the different iterations, in other words

P'4(c),.--, /5(n), n < nma., n is the number of subclasses when the splitting

process terminates. As argued previously, it is reasonable to assume a classifier

with design set based error rate close to min{Pe(i)} as sufficiently adapted to

the data set. Therefore we will choose the classifier involving k subclasses where

k is the lowest number of subclasses for which

Pe(k) < max {-y min {Pe(i)}, P.in} (4.35)

where i = c,... , n, Pmin _ 0 and -y > 1. As a special case we see that 4.35

equals 4.34 if -' = 1, Pmin = 0 and q = oo.

5 EVALUATION OF THE CLASSIFIERS

In the previous chapter a new strategy for generating a multiclass piecewise

linear classifier was developed. The evaluation of the classifiers was only based

on the adaptability to the data set for a given number of discriminant functions

(subclasses). The error rate, computational speed, memory requirement, etc was

not considered. However, all these topics are necessary to study, and we also

have to compare the classifiers derived in chapter 4 with other classifiers in

order to evaluate their performance. Therefore, in this chapter we will compare

the classifiers using both real and synthetic data sets. In the tests involving

synthetic data, Monte Carlo simulation is used for estimating the various

evaluation criteria. The following 10 classifiers are evaluated:

92

a) The classifiers derived in 4.31 - 4.34 (NSMC, MSE, W-MSE, HPC)

b) Bayes classifier with known distribution (wherever it is known!!) (B)

c) Bayes classifier assuming Gaussian distributions (B-G)

d) Bayes classifier with probability densities estimated with the k-N-N

method (B-kNN)

e) The -arest neighbour rule (NNR)

f) The tree classifier of Mizoguchi et al [26] (TC)

g) The seniority logic committee machine of Lee and Richard [24] (SLCM)

As seen, a wide range of classifiers are chosen including a fast, easy computable

and often used classifier (B-G), reliable and complex classifiers (B-kNN and

NNR) (fast algorithms for finding the k nearest neighbours are also available,

e.g. [22]) as well as "competing" piecewise linear classifiers (TC and SLCM).

Thus other interesting classifiers such as various tree classifiers [33, 37, 38],

classifiers assuming mixed Gaussian distributions [18, 35] or classifiers based on

vector quantization [36] are excluded for several reasons. First of all, the

number of classifiers used in the evaluation has to be restricted. Furthermore,

some of the interesting classifiers have also been actualized after the initiation of

our study.

The evaluation criteria have been chosen as

a) P, - the error rate of a classifier using the design set (PD) or the test set

(PT).

b) P(elw) - the conditional error rates.

c) The number of discrimirant functions (used for NSMC, MSE, W-MSE,

HPC, TC, SLCM)

d) The average number of computed discriminant functions (used for NSMC,

MSE, W-MSE, HPC, TC, SLCM)

93

The reason for using the error rate is obvious. Moreover, it is also of interest to

study the conditional error rate. Then we are able to see how well each class is

being classified (compared to the optimal classifier wherever it may be found).

The two last criterions are for evaluating the classifiers with respect to

computational speed and memory requirement of the different piecewise linear

classifiers.

In the Monte Carlo simulations we have computed - for each criterion - both

the mean criterion value and its standard deviation.

The piecewise linear classifiers derived in [24] and [26] are designed for two class

problems only. Therefore, the tests used in this chapter are mainly based on two

class problems. Three synthetic data sets (two class problems) used in the tests,

consist of samples drawn from Gaussian distributions, Gaussian/banana

distributions and banana/banana distributions. Two data sets - both two class

problems - involving real data are also used. The first data set is derived from

geophysical events [9] and the second data set is derived from the silhouettes of

two different cars. Finally, the classifiers derived in this thesis, the Bayes

classifier(s) and the nearest neighbour rule are tested on the synthetic three

class problem described in 4.1.4 in order to demonstrate the classifiers

multiclass properties.

We use the algorithm described in 4.4.3 (y = 1.2, P,,i,, = 0.02) for determining

the (final) classifier. As we remember, this strategy is only based on the (design

set based) error rate estimate. Thus, we are able to evaluate both the number of

discriminant functions needed to obtain a well adapted classifier as well as the

error rate.

For each Monte Carlo experiment (each set of distributions), we have made

tests using 25 and 150 samples for representing each class (in a replication).

Therefore we are able to evaluate the classifiers both for small data sets and for

moderate to large data sets. Equal a priori probabilities have been assumed in

all experiments. Moreover, 500 replications are used in the simulations involving

150 samples from each class, and 1000 replications when only 25 samples are

used in each class.

94

In the experiment using Gaussian distributions, the samples representing w, is

taken from a N [9 []9 distribution. The samples from L is drawn from

aN([0],[1 0])distribution. Thus we will have some overlap between

the classes. This is an interesting situation for investigating how well a classifier

is able to discriminate the classes without being too adaptable to the design set.

The results (containing the means and standard deviations of the criteria) from

the 150-samples test are shown in table 5.1.

The next experiment consists of Gaussian and banana distributed samples. The

samples representing w, are drawn from a banana distribution (parameters:

IA = 0, r 0 = 5 and E = 1800), and the samples from W2 are taken from a

standard Gaussian distribution (see 4.1.4). This is an interesting situation both

because the overlap between the classes is small and because only non-linear

surfaces are able to discriminate the classes well. The results when using 150

samples for representing each class in each replication are shown in table 5.2.

In the experiment presented in table 5.3, all samples are taken from banana

distributions in order to see how the classifiers handle concave data sets. Here,

only 25 samples are representing each class in each replication. The parameters

of the distribution of w, are: A = 0, r0 = 5 and E) = 1800. The parameters of

the distribution of w2 are: = 3) r0 = 5 and ® = 0. In this experiment,

only classifiers resulting in non-quadratic discrimination surfaces are able to

discriminate the classes.

The last synthetic test to be evaluated is the three class problem. The results

from the 150 samples experiment are to be found in table 5.4.

95

Classifier P(eluw,) P(elw2) Pej, PT No discr func No comp

NSMC 0.0420 0.2227 0.1253 0.1323 2.92 2.92

0.0386 0.0447 0.0205 0.0152 1.23 1.23

MSE 0.0465 0.2119 0.1231 0.1292 2.53 2.53

0.0256 0.0457 0.0210 0.0136 0.72 0.72

W-MSE 0.0365 0.2242 0.1232 0.1303 2.77 2.77

0.0257 0.0364 0.0195 0.0115 0.86 0.86

HPC 0.0768 0.1985 0.1137 0.1376 2.49 2.49

0.0418 0.0393 0.0207 0.0118 0.68 0.68

B 0.0566 0.1636 - 0.1101 - -

0.0089 0.0137 - 0.0080 - -

B-G 0.0583 0.1637 0.1100 0.1110 - -

0.0133 0.0168 0.0178 0.0080 - -

B-kNN 0.0572 0.1839 - 0.1206 - -

0.0214 0.0222 - 0.0085 - -

NNR 0.1566 0.1594 - 0.1580 - -

0.0258 0.0196 - 0.0131 - -

TC 0.1623 0.1938 - 0.1781 37.25 4.17

0.0407 0.1621 - 0.0702 8.99 2.72

SLCM 0.1627 0.1609 - 0.1618 51.75 12.60

0.0323 0.0231 - 0.0152 7.34 15.75

Table 5.1: Results using Gaussian distributed samples. The samples from w, are

taken from a N(O,diag[9,1]) distribution, and the samples from w 2 are

drawn from a N([0,4]t ,diag[1,9]) distribution. There are 150 samples

in each class, and 500 replications are used in the simulations. Both

the mean and the standard deviation of each criterion and classifier

are shown.

96

Classifier P(e[l~) P(ew 2) PD P,, No discr func No comp

NSMC 0.0047 0.0225 0.0121 0.0136 3.05 3.05

0.0040 0.0065 0.0059 0.0033 0.24 0.24

MSE 0.0439 0.0134 0.0254 0.0287 3.12 3.12

0.0131 0.0095 0.0087 0.0056 0.55 0.55

W-MSE 0.0379 0.0230 0.0268 0.0305 3.12 3.12

0.0064 0.0127 0.0074 0.0065 0.54 0.54

HPC 0.0133 0.0162 0.0041 0.0148 3.00 3.00

0.0096 0.0102 0.0051 0.0037 0.00 0.00

B 0.0037 0.0123 - 0.0080 - -

0.0022 0.0039 - 0.0023 - -

B-G 0.0009 0.0382 0.0175 0.0195 - -

0.0012 0.0096 0.0061 0.0047 - -

B-kNN 0.0095 0.0071 - 0.0083 - -

0.0042 0.0033 - 0.0024 -

NNR 0.0125 0.0117 - 0.0121 - -

0.0067 0.0058 - 0.0038 - -

TC 0.0148 0.0279 - 0.0213 7.15 2.63

0.0109 0.0675 - 0.0334 5.27 0.74

SLCM 0.0117 0.0257 - 0.0187 6.13 3.15

0.0083 0.0131 - 0.0066 2.38 1.42

Table 5.2: Results using Gaussian/banana distributed samples. The samples in

w, are taken from a banana distribution with parameters p =0, ro =

5, e = 1800, and the samples from w2 are drawn from a standard

Gaussian distribution. There are 150 samples in each class, and 500

replications are used in the simulations.

97

Classifier P(etwi) P(eIw2) P,, P, No discr func No comp

NSMC 0.0494 0.0533 0.0227 0.0514 4.86 4.86

0.0406 0.0400 0.0141 0.0275 1.35 1.35

MSE 0.0933 0.0876 0.0503 0.0904 3.97 3.97

0.0473 0.0500 0.0255 0.0174 1.88 1.88

W-MSE 0.0844 0.0943 0.0506 0.0894 4.37 4.37

0.0349 0.0373 0.0244 0.0157 2.33 2.33

HPC 0.0685 0.0886 0.0145 0.0786 3.22 3.22

0.0529 0.0532 0.0152 0.0320 1.20 1.20

B 0.0119 0.0119 - 0.0119 -

0.0039 0.0039 - 0.0028 -

B-G 0.0954 0.0953 0.0813 0.0953 -

0.0301 0.0306 0.0381 0.0113 -

B-kNN 0.0460 0.0456 - 0.0458 -

0.0277 0.0272 - 0.0181 -

NNR 0.0296 0.0296 - 0.0296 -

0.0194 0.0192 - 0.0101 -

TC 0.0902 0.1012 - 0.0957 4.24 1.97

0.0520 0.0527 - 0.0303 2.55 0.86

SLCM 0.0738 0.0738 - 0.0738 5.04 2.61

0.0459 0.0451 - 0.0262 1.12 1.36

Table 5.3: Results using banana distributed samples. The samples in w, and W2

are drawn from banana distributions with parameters A =0, ro = 5,

e = 1800 and p = f-3, -5], ro = 5, = 0 ° . There are 25 samples in

each class, and 1000 replications are used in the simulations.

98

Classifier P(elwji) P(eIw2) P(eCIw 3) PI, PT No dicr func

NSMC 0.1982 0.1444 0.1870 0.1635 0.1765 6.05

0.0516 0.0254 0.0390 0.0203 0.0121 1.07

MSE 0.4680 0.2316 0.0937 0.2546 0.2644 4.93

0.1125 0.1296 0.1045 0.0286 0.0269 1.12

W-MSE 0.1894 0.2235 0.1722 0.1878 0.1984 5.22

0.0799 0.0466 0.0493 0.0225 0.0199 1.09

HPC 0.2562 0.1625 0.1107 0.1442 0.1765 5.96

0.0545 0.0610 0.0689 0.0238 0.0194 0.97

B 0.1989 0.1421 0.0993 - 0.1476 -

0.0144 0.0129 0.0107 - 0.0073

B-G 0.3348 0.1248 0.0923 0.1794 0.1840 -

0.0333 0.0187 0.0156 0.0187 0.0106 -

B-kNN 0.2465 0.1513 0.0851 - 0.1610 -

0.0288 0.0214 0.0179 - 0.0094 -

NNR 0.2721 0.2027 0.1691 - 0.2145 -

1 0.0268 0.0254 0.0240 - 0.0127

Table 5.4: Results from the three class problem. For details about the distribu-

tions, please see the text. There are 150 samples in each class, and

500 replications are used in the simulations. The two-class classifiers

TC and the SLCM are, of courese, not included in this test.

99

The first thing to notice is that the mean squared error and the weighed mean

squared error based classifiers generally perform non-satisfactorily. The only

exception is the first experiment (concerning Gaussian distributions) where they

work well due to the linear classifier's capability of discriminating convex

distributions.

However, the NSMC and the HPC perform satisfactorily, and they work equally

well as the B-kNN and the NNR. The NNR perform better than the NSMC and

the HPC in the experiments where there are little overlap between the classes,

and the B-kNN perform slightly better than the NSMC and the HPC in all

experiments. These results show that it seems possible to generate reliable

classifiers which are computationally simple.

Even though the Gaussian assumption in some experiments is far from fulfilled,

the Bayes classifier with Gaussian assumptions works well in all experiments

except for the one concerning banana/banana distributions. Furthermore,

according to section 2.3, it is almost as fast to compute as our classifiers.

Compared with the TC and the SLCM, our classifiers perform better. When it

is some overlap between the classes, such as in the experiments considering

samples taken from Gaussian distributions, the TC and the SLCM require

relatively large amount of memory and computation time (relative to the

NSMC and the HPC) too.

The first data set involving real data, contains 311 seismic events (113 nuclear

detonations and 198 earthquakes) recorded at the Large Apparture Seismic

Array (LASA) near Billings, Montana. The duration of each signal is 60

seconds. The signals are sampled at 20 Hz. Most of the signal energy which has

been found useful for teleseismic discrimination is within the frequency band

0.3 Hz to 5.0 Hz. Therefore, the signals are resampled with 10 Hz after a

median filtering of the original time series. Moreover, the signals are also peak

to peak scaled and normalized to zero mean.

The total set of events is randomly divided into a design set and a test set. The

distribution of events with respect to class and subset is given in table 5.5.

100

Class Design set Test set

Explosion 56 57

Earthquake 93 105

Table 5.5: The number of geuseismic events (samples) in the design set and test

set for each class.

For each time series, the autoregressive (AR) coefficients are computed. In other

words, we use the coefficients aj of an m'th order AR model

rn-1

Xk+1 =E ajxk_. + ek
j=O

where ej is stochastic and may be viewed as the prediction error. These

coefficients are determined by Burgs algorithm which uses the available time

serie for minimizing the error power Pm given as:

n-rn

k=1

The maximum entropy power spectral estimate for real input data is

S(f) =akei2lrfkAI 2

where At denotes the sampling interval. Furthermore, the spectral ratio is

defined as

41-9 VI:~f) df
SR= fo0

.8 5

In order to use dynamic information, the AR coefficients and the spectral ratio

are computed from windows taken at N regular intervals. These spectral ratios

and the bodywave magnitude Mb are then combined in the following N + 1

dimensional feature vector

101

x= [SRi, SR 2 ,., SRN, MVb]t .

We have used 3 spectral ratios in the feature vector. Moreover, a two

dimensional version of the data set is also classified after applying the

Foley-Sammon transform for dimensionality reduction. Moro- details about the

signal processing and the computation of the feature vector may be found in [9).
The Foley-Sammon transformed data set is plotted in figure 5.1.

2. 1 x s I

0 'X

0

0
0 0 0

080 x o

o 0

0 e
°0 o0 0

x 0

N O0 0 X

Xx

0.848

Figure 5.1: Scatter plot of the geoseismic events. Class 1 (o) is explosions and

class 2 (x) is earthquakes.

All the different classifiers have been tested on these data sets, and the results

using the four dimensional data set are shown in table 5.6. The results using

the two dimensional data set are given in table 5.7. In the experiments, the

a priori probability P(wi) = 5 s sumd

These data sets are useful for the evaluation of the classifiers. As can be seen

from the plot in figure 5.1, they seem to be rather difficult data sets to classify

due to the overlap between the classes. Application of the strategies developed

in this thesis shows (with one exception) that a linear classifier is sufficient for

the discrimination. Intuitively, from the figure, this is a reasonable decision to

make.

102

Classifier P(elwi) P(eIw2) P P, No discr func No comp

NSMC 0.3333 0.0952 0.1611 0.1847 2 2.00

MSE 0.3509 0.0952 0.1208 0.1913 2 2.00

W-MSE 0.2982 0.1238 0.1342 0.1894 2 2.00

HPC 0.2281 0.1905 0.1678 0.2046 2 2.00

B-G 0.3333 0.1238 0.1912 0.2026 - -

B-kNN 0.2982 0.1238 - 0.1894 -

NNR 0.3158 0.1619 - 0.2197 -

TC 0.2982 0.2476 - 0.2666 21 4.15

SLCM 0.4035 0.2857 - 0.3300 37 19.85

Table 5.6: Results using data set containing seismic events. The data set with

four dimensional feature vectors are used.

Classifier P(elwi) P(eIw 2) P,, P No discr func No comp

NSMC 0.2807 0.1429 0.1342 0.1947 2 2.00

MSE 0.2982 0.0571 0.1275 0.1478 4 4.00

W-MSE 0.2456 0.1333 0.1409 0.1755 2 2.00

HPC 0.3158 0.0606 0.1208 0.1544 2 2.00

B-G 0.2807 0.1048 0.1544 0.1709 -

B-kNN 0.2632 0.1905 - 0.2178

NNR 0.2982 0.1810 - 0.2250 - -

TC 0.2456 .0.2286 - 0.2350 35 4.60

SLCM 0.2456 0.2190 - 0.2290 38 19.26

Table 5.7: Results using data set containing seismic events. The data set with two

dimensional (Foley Sammnon transformed) feature vectors are used.

103

We also see that the results in general are better by classifying the two

dimensional data set than by classifying the four dimensional data set. This

effect probably results from the increased number of parameters which have to

be determined. However, there is no (evaluated) classifier that performs

significantly better in the four dimensional case than those developed in the last

chapter (NSMC, MSE, W-MSE, HPC). Furthermore, compared to the TC and

the SLCM, our classifier are much better.

In the two dimensional experiment, all our classifiers except the NSMC give

very low error rates. In fact, only the the B-G has comparable results (relative

to our classifiers) in this experiment. Due to the heavy overlap between the

classes, the NNR and the B-kNN provide a surprisingly high error rate. We also

notice that our classifiers requires much less memory than the "competing"

piecewise linear classifiers, and that they are significantly faster than the SLCM.

The next and last example to be given is the discrimination of two different cars

(Nissan Sunny and Nissan Prairie). An image sequence of these cars has been

recorded with a CCD-TV camera. The sequence is digitized using the

Teragon 4000 Image Processing computer of NDREs image processing and

pattern recognition group. 200 frames are recorded for each car. Then each

frame is segmented in a very simple way. First the absolute difference image of

the frame and a reference frame is thresholded. A global entropy based

thresholding procedure is used for this purpose [21]. Next, noise is removed

from the binary image by a 3 x 3 median filter. Finally the segment(s) are filled

by use of a logical filter. This procedure gives a relatively good vehicle

silhouette and only a few small noise segments. Therefore, since each frame

contains one vehicle only, the largest connected segment in each frame is treated

as a vehicle silhouette. In figure 5.2, the segmentation result for frame no I is

shown. Figure 5.2a shows the the original TV-image, figure 5.2b the difference

image, figure 5.2c the thresholded image, and finally in figure 5.2d the median

and logical filtered image is shown.

For each segment several moments are computed. The (p + q)'th central

moment , Mpq, is defined as

104

Figure 5.2: Segmentation result for frame no I in the Sunny/Prairie example.

Mpq = E (X - YP -Y)
(Z,u,)ES

where p > 0, q > 0 and S denotes the set of pixels which defines the segment.

Moreover, (7, y) denotes the centroid of the segment. We have computed the

moments for which p + q < 3 only. It is easily seen that Mpq is neither rotation

invariant nor scale invariant. Scale invariance is obtained by sim -ly dividing

Mpq by (M 0o)V
/' + . Furthermore, rotation invariance is obtained by rotating

the coordinate system an angle a. Here, a denotes the angle between the

inertial axis of the segment and the x-axis. For details, see [31]. Now, let Spq

denote a scale, rotation and translation invariant moment. The moments S20,

S02, S21, S12, S3o and S03 may now be used in the classification.

Also in this example, the total data set is randomly divided into a design set

and a test set. The distribution of samples with respect to class and subset is

given in table 5.8

105

Class Design set Test set

Sunny 95 105

Prairie 91 109

Table 5.8: The number of cars (samples) in the design set and test set for each

class.

All feature combinations are tested using the nearest neighbour rule in order to

find well performing feature candidates. The classification system IPACS [10] is

used for this task. The moments S20, S 21 and S, 2 in conjunction with the

Folley-Sammon transform [13] have been found to be the best feature

combination (the combination with the smallest error rate estimate using the

N-N-R). In figure 5.3 the data set is shown, and in table 5.9 the results using

the different classifiers are given.

0 0 0

0 0 0

0 0 0 o 00

o

0 oo 0
a 0 a

L 0 0 t a0 O

01 ~ 0000b 0

0 o o O 0

88- 0o , ' o 0 X

0 0 0 0 0 0 0

.00 X 5o o 0 0

All~ clsifes excette SCan h SLM maaeoo-iciinth

t T rsl o i b

z.00q 0. X. 0

Figure 5.3: Scatter plot of the car discrimination problem. Class I (o) is the

Sunny and class 2 (x) is Prairie.

All classifiers, except the NSMC and the SLCM, managed to discriminate the
two cars satisfactorily. The results obtained by using the HPC and the W-MSE

are encouraging. In fact, these classifiers produce the best classification result

for this particular data set.

106

Classifier P(elwi) P(eIw 2) P Per No discr func No comp

NSMC 0.3238 0.0734 0.1708 0.1986 5 5.00

MSE 0.1619 0.1193 0.1342 0.1406 2 2.00

W-MSE 0.0762 0.1284 0.0980 0.1023 4 400

HPC 0.1619 0.0275 0.1389 0.0947 8 8.00

B-G 0.1238 0.1009 0.1129 0.1124 - -

B-kNN 0.2095 0.0367 - 0.1231

NNR 0.1429 0.0826 - 0.1128 -

TC 0.1048 0.1835 - 0.1442 39 5.08

SLCM]_0.2381 0.1376 - 0.1879 52 26.04

Table 5.9: Classification results using the data set containing features derived

from the silhouettes of two different cars.

To summarize, the majority of the strategies proposed in the previous chapter

produce good classification results in all experiments. Thus, we have succeeded

in designing fast and reliable classifiers with performance comparable with more

complex ones.

However, we notice that the MSE-based classifiers show an unconvenient

behaviour. They both work well only in situations where a single hyperplane is

sufficient to discriminate between t'. - classes. In other situations, at least one of

them is not useful.

Moreover, the NSMC and the HPC have much better performance Lhan the TC

and the SLCM, and usually only a small number of discriminant functions is

required for obtaining a reliable classifier. Furthermore, the HPC seems to be

slightly better than the NSMC, but in most cases there is no significant

difference. However, in a few situations the classifiers do not perform well. The

NSMC may become unreliable if the vector perpendicular to a suitable

hyperplane (separating a, and aj) differs significantly from the direction of

(iii - j). It is also affected by scaling of the axes. Furthermore, the linear

classifier used in the HPC occasionally adapts too well to the data set. This may

produce an unreliable classifier when only a few training samples are available.

107

Even though the Gaussian assumption often is far from fulfilled, the Bayes

classifier with Gaussian assumptions (B-G) performs well in all situations where

hyperquadratic surfaces are feasible for class separation. Thus, in many cases

this classifier is an alternative to the NSMC and the HPC. Furthermore, this

result indicates that classifiers based on mixtures of Gaussian distributions also

will show a good adaptability. However, they are most likely more demanding

concerning computational power than linear, quadratic or piecewise linear

classifiers.

The NNR and the B-kNN perform somewhat better than our classifiers in all

examples except in situations with large class overlap. Unfortunately, they are

computationally "heavy", and since they need the data set stored, their memory

requirements may cause problems in some applications.

6 SUMMARY AND CONCLUSION

In this thesis we have developed a new strategy for generating a piecewise linear

classifier. Our goal have been to find classifier(s) which combines high reliability

with fast computational speed. Generally speaking, the algorithm is as follows:

First the algorithm attempts to discriminate the classes by using a linear

classifier. If this classifier shows poor performance, then the sample space of one

of the classes is split into two disjoint subsample spaces. All samples in a design

set from a given class lying in the same (sub)sample space are said to belong to

the same (sub)class. In a practical situation the splitting is a clustering process

in which the set of samples representing a given (sub)class are separated into

two clusters. Next, the (sub)class information is used for generating a piecewise

linear classifier, and its performance evaluated. If the performance is

unsatisfactorily, the sample space of one of the (sub)classes is split and a new

classifier generated and evaluated. This process continues until either a

maximum number of subclasses is reached, further splitting is impossible, or the

performance is expected not to be significantly improved by further splitting.

108

Several problems had to be solved. First we had to develop an algorithm for

determining a suitable subsample space to split. Two different strategies have

been developed and evaluated. The first (and best!) one is a hillclimbing

approach which first evaluates all possible (sub)sample spaces to split, and then

selects the best one for splitting. In the other approach, the sample space of the

(sub)class contributing most to the design set based estimate of the error rate is

split. Not surprisingly, the hillclimbing approach perform much better than this

contribution based splitting. The reason is that the hillclimbing approach

evaluates all possible splits in a given iteration.

Several splitting algorithms have been developed and tested. We found that the

best strategy is to first split the data set representing a given (sub)class in the

direction of maximum variance and then maximize the distance from the mean

of the data set of the original (sub)class to the mean of the nearest new subclass

by using an algorithm based on the principle of evolutionary search.

Given a set of (sub)classes, four different ways of generating a piecewise linear

classifier have been developed and studied. The simplest one is the nearest

sub-mean classifier (NSMC). This classifier assigns a sample to the class with

the nearest (sub)mean. Two other strategies, based on the mean squared error

approach, have in many situations been discarded due to poor performance of

the corresponding classifiers. The last strategy (the HPC) is more complicated

to design. In this approach, we first have to find the pairs of (sub)classes which

are to be discriminated by a hyperplane. Next, the hyperplanes are generated,

and finally used for computation of the piecewise linear classifier. This classifier

as well as the NSMC have been found to perform well in most situations.

The evaluation of the classifiers is based on both synthetic and real data. Monte

Carlo simulation techniques have been used in the experiments involving

synthetic data.

109

Our classifiers have also been compared with other classifiers such as Bayes

classifier (wherever the probabilities are known), Bayes classifier with estimated

densities (based on the k-NN approach), Bayes classifier with assumed Gaussian

distributions, the nearest neighbour rule, as well as with two piecewise linear

classifiers designed for the two-class problem.

The HPC performs well in all tests. It adapts itself to the data set using only a
small number of discriminant functions. However, it seems that the linear

classifier used, adapts "too well" to the design set especially when only a small

number of samples are available for the training. This may cause a high error

rate. Thus it seems that the error rate estimate (based on the design set) is not

a sufficiently good optimizing criterion. However, to this authors knowledge, no

linear classifier is available which performs well in all situations, but this

problem will be a topic for a future study. Also the NSMC shows a good

performance in almost all tests. Except for the car discrimination example, it

manages to adapt itself to the data set using only a small number of

,iscriminant functions. However, we have seen that this classifier may have

problems with the adaptability if the direction of the vector perpendicular to

the hyperplane separating two subclasses (e.g. cri and aj) differs significantly

from the direction of 1Ai - 1Aj. These findings are contrary of the results

obtained for the other two-class piecewise linear classifiers. These classifiers

seem to be quite complicated when there are some overlap between the classes.

In some situations our classifiers even show a better performance than the

computationally heavy nearest neighbour rule. Moreover, Bayes classifier with

estimated densities is better in most situations, but the difference is not large.

These results encourage further studies of the HPC and the NSMC classifiers.

Topics for such investigation may be comparisons with neural net classifiers, as

well as with classifiers based on mixtures of Gaussian distributions.

Acknowledgments

The work presented in this report is my dissertation for the doctor scientiarum

degree at the University of Oslo, and several persons involved in this project are

110

to be thanked. First of all, I would like to express my utmost gratitude to my

advisors, senior scientist Idar Dyrdal and Professor Dr Philos Knut Liestol.

Their judicious guidance and suggestions have been invaluable. Furthermore, I

wish to extend thanks to my colleagues Jan Petter Fjellanger, Stein Grinaker

and Eilert Heyerdahl for fruitful comments and discussions. Last but not least,

appreciation is also extended to the rest of the image processing and pattern

recognition group at the NDRE for their patience during my one CPU-year

simulation study.

References

[1] Andrews D F, Bickel P J, Hampel F R, Huber P J, Rogers W H, Tukey J

W (1972): Robust estimates of location, Survey and advances, Princeton

University Press

[21 Bayne C K, Beauchamp J J, Begovich C L,Kane V E (1980): Monte Carlo

studies in clustering procedures, Pattern Recognition, 12, pp 51-62

[3] Chang C L (1973): Pattern recognition by piecewise linear discriminant

functions, IEEE Trans Comp, C-22, pp 859-862

[4] Clark D C, Gonzalez R C (1984): Optimal solution of linear inequalities

with applications to pattern recognition, IEEE Trans Patt Anal and Mach

Int, PAMI-3, pp 643-655

[5] Devijver P A, Kittler J (1982): Pattern Recognition: A statistical

approach, Prentice/Hall International.

[6] Dubes R, Jain A K (1979): Validity studies in clustering methodologies,

Pattern Recognition, 11, pp 235-254

[7] Duda R 0, Fossum H (1966): Pattern classifiaction by iteratively

determined linear and piecewise linear discriminant functions, IEEE Trans

Electon Comp, EC-15, no 2, pp 220-232

[8] Duda R 0, Hart P E (1973): Pattern classification and scene analysis,

John Wiley and Sons

111

[9] Dyrdal I (1987): Teleseismic discrimination of earthquakes and nuclear

detonations with features derived from maximum entropy power spectral

estimates, Int Journal of Pattern Recognition and Artificial Intelligence, 1,

no 3-4, pp 323-333

[10] Dyrdal I (1988): Introduction to IPACS - Interactive Pattern Analysis and

Classification System, FFI/RAPPORT-88/4019, Norwegian Defence

Research Establishment.

[111 Fenstad G U, Kjaernes M, Walloe L (1980): Robust estimation of standard

deviaton, J Scand Comput Simul, 10, pp 113-132

[121 Fischer R A (1936): The use of multiple measurements in taxonomic

problems, Annal of Eugenics, 7, pp 179-188

[13] Foley D H, Sammon J W (1975): An optimal set of discriminant vectors,

IEEE Trans Comp C-24, pp 281-289

[14] Gallant S I (1986): Optimal Linear Discriminants, Proc Eight Int Conf on

Pattern Recognition, pp 849-852

[15] Hand D J (1981): Discrimination and Classification, John Wiley and Sons

[16] Hand D J (1986): Recent advances in error rate estimation, Pattern

Recognition Letters, 4, pp 335-346

[17] Hand D J (1986): An optimal error rate estimator based on average

conditional error rate: Asymptotic results, Pattern Recognition Letters, 4,

pp 347-350

[18] Hjort N L (1986): Notes on the theory of statistical symbol recognition,

Resarch report no 778, Norwegian Computing Centre

[19] Hoffman R H, Moe L M (1969): Sequential algorithm for the design of

piecewise linear classifiers, IEEE Trans Sys Sciences and Cybernetics, 5, pp

166-168

[20] Jain N C, Indrayan A, Goel L R (1986): Monte Carlo comparison of six

hiearchical clustering methods of random data, Pattern Recognition, 19,

pp 95-99

112

[211 Kapur J N, Sahoo P K, Wong A K C (1985): A new method for gray-level

picture thresholding using the entropy of the histogram, Comp Graph

Image Proc, 29, pp 273-285

[22] Kim B S, Park S B (1986): A fast k nearest neighbour finding algorithm

based on the ordered partition, IEEE Trans Patt Anal and Mach Int,

PAMI-8, pp 761-766

[23] Koontz W L G, Patrenahalli M N, Fukunaga K (1975): A branch and

bound clustering algorithm, IEEE Trans Comp, C-24, pp 908-915

[24] Lee T, Richards J A (1984): Picewise linear classification using seniority

logic committee methods, with application to remote sensing, Pattern

Recognition, 17, pp 453-464

[251 Mangasarian 0 L (1968): Multisurface method of pattern separation, IEEE

Trans nf The, IT-14, pp 801-807

[26] Mizoguchi R, Shimura M, Kakusho 0 (1980): A new algorithm for

construcing piecewise linear discriminant functions, Proc Fifth Int Conf on

Pattern Recognition, pp 666-670

[27] Maland E (1986): Seismic data processing, University of Bergen (in

norwegian)

[28] Palm H C, Grinaker S (1988): Parralisation of algorithms for image

processing and pattern recognition FFI/NOTAT-88/4022, The Norwegian

Defence Resarch Establishment (in norwegian)

[29] Palm H C (1988): A new piecewise linear classifier, Proc conf on image

analysis and pattern recognition, Report no 818, Norwegian Computing

Center (in norwegian)

[30] Rahbar R, Mix D F (1980): Pattern recognition based on piecewise linear

or quadratic discriminant functions, Proc Fifth Int Conf on Pattern

Recognition, pp 674-676

[31] Rosenfeld A, Kak A C (1982): Digital picture processing, Academic Press

113

[321 Selim S Z, Ismail M A (1984): K-means-type algorithms: A generalized

convergence theorem and characterization of local optimality, IEEE Trans

Patt Anal and Mach Int, PAMI-6, pp 81-87

[33] Shi Q Y, Fu K S (1983): A method for the design of binary tree classifiers,

Pattern Recognition, 16, pp 593-603

[341 Takiyama R (1978): A general method for training the committee machine,

Pattern Recognition, 10, pp 255-259

[351 Taxt T, Eikvil L, Hjort N L (1989): Statistical classification using mixtures

of multinormal densities, Proc Conf on Pattern Recognition, Paris

[36] Therrien C W (1989): Decision estimation and classification John Wiley

and Sons

[37] Wang Q R, Suen S Y (1984): Analysis and design of decision trees based

on entropy reduction and its application to large character set recognition,

IEEE Trans Patt Anal and Mach Int, PAMI-6, pp 406-417

[38] Wang Q R (1987): A flexible tree design in an edit-partition scheme,

Pattern Recognition Letters, 5, pp 261-265

[39] Wee W G (1968): Generalized inverse approach to adaptive multiclass

pattern classification, IEEE Trans Comp, C-17, pp 1157-1164

A: A ROBUST OUTLIER DETECTOR

Commonly used outlier detectors is based on the Mahalanobis distance between

a sample z and the centroid j. (the expected value) of a class w. The

Mahalanobis distance Dr(z, ,) is given as

D'(z, it) = (z - uE)t -'(z - &). (A:.1)

114

Now, z is considered as an outlier if

D.(z, At) > d. (A:.2)

In other words; if z is outside the du ellipsoid, i.e. if there are more than d

standard deviations between z and t, then z is assumed to be an outlier.

Usually, 1A and E are unknown. Therefore, they need to be estimated. Given a

data set Z = {z 1,... , z,,}, they can be estimated the usual way, i.e.

1in
is - z. (A:.3)

n.
- 1 i=1

1-L Z",-,)z (A:.4)

However, A:.3 and A:.4 are known to be little robust. Therefore, we will try to

find a more robust way of detecting outliers.

Our outlier detector is based on projecting of a sample into a one dimensional

space. First, let us as an alternative to A:.1, project the samples in Z into the

vector a = (z - t). Moreover, let a denote the standard deviation of the

distribution of the projected sample(s). Furthermore, y is defined as y = atz.

Then z is considered as an outlier if

My) 2 (atz) 2 d2

- at a

A robust estimate of a may be easily obtained. Fenstad et al [11] have studied

several standard deviation estimators, and they concluded that a quartile based

estimator is very robust. This result leads us to a method for one dimensional

outlier detection (and rejection) given in [1] which has been found to work out

well. This algorithm is based on the interquartile difference, and we may easily

adapt it for our d dimensional outlier detection.

115

Let z denote the sample to be tested using the data set Z = {z,... , z}.

Moreover, let us define a = (z - A), Yi = a'zi and the data set Y = y, ,yn}.

Furthermore, let H1 and H 2 denote the lower and upper quartile of Y

respectively. Now, if

H, - c(H 2 - H) < a'z < H2 + c(H 2 - H1) (A:.6)

then z is not considered as an outlier.

In the simulations presented in 4.2 we used c = 1.5, and it is shown that A:.6

manage to handle the outlier problem.

Finally, let us illustrate our algorithm using 100 samples taken from bivariat

Gaussian distribution. The outlier rejection boundary is computed and the

result is shown in figure A:.1 (c = 1.5).

8.

, .o -,.o -S.o -6.0 -3.0 0.0 3.0 a 0 o.0 .0 .0

XI

Figure A:.1: The outlier rejection boundary computed from 100 samples taken

from a bivariat Gaussian distribution.

116

B: THE CONNECTION BETWEEN (, - - p) AND tr{W}

Let us first define the within-class scatter matrix (W), the between-class

scatter matrix (B) and the (total) scatter matrix (T) the usual way

2 N,

W = E Z(Z,, - ,)(Zi, - J,,',
i=l j=l

i=1

and

NT = E(z. - I,)(-.j - t,1'- W + B
j=1

where

1 N,

=~

=1 1 ANIAI + N2-"2)

. ={zi,"zN,},i= 1,2, Z= {Zl,,...ZN}= Zl UZ2, Ni denotes the

number of samples in a subclass and N is the total number of samples

(N = N, + N2).

Now we may state the following theorem:

Theorem: Minimizing the cost function J1 = (Al - A)t(M 2 - 14) is equivalent

to minimizing the cost function J2 = tr{W}.

117

Proof:

It is easy to be convinced that

min{tr{W}} = max{tr{B}} = max{tr{T - W}}

Let us first find an expression for tr{B}.

d

trfB = E{ [N (J11(i) - (i))2] + [N2 (A 2 (i) _ U(i))21 }
i=1

= Z[Nipd(i)2 + N 2112(i)2 + Na(i)2 - 2 (Nlp(i) + N 2A 2(i)) 1(i)]
i=1

= Z[N14I(i)2 + N2/2 (i)2 - N (i)2] .i=1

Then, we find an expression for the inner product.

d

(Al -)(2- 1A) = E [p 1(i) 2 (i) - (As(i) + 112 (i))IL(i) + I(i)2
i=l

E 14 .(0,42(2) - -(Pl(i) + P2(i))(N1A1(i) + N2.42(i)) +,

d 2 [-P2(i)
*)2 + P2+

_ --tr{B}.N

Now, we find that min{(tj- A)' (1.2 - 10)} implies max{trB}} which implies

min{trW}} which in turn implies the theorem.

118

C: THE SINGULAR VALUE DECOMPOSITION METHOD

USED FOR DETERMINING THE PIECEWISE LINEAR

CLASSIFIER FROM A SET OF HYPERPLANES

Let us assume that m pairs of subclasses should be separated, and that the m

hyperplanes have been generated. Furthermore, let ak, define the hyperplane
separating the subclasses a4 and aj, (1 < ik < n and 1 < 'k n). Since a'- is

separating these two subclasses, it has to be a solution of the equation
a - aj, = as . . Now, we want to find the weight vectors a1 ,, .. a,, (one for

each subclass) by solving the following set of equations

aj, - a,, = a,,,

aj2 - a)2 = a2 (C:.1)

ai. - aj. = ai,,j.

As stated in 4.3.4.3, a solution of C:.1 can be obtained by using the singular
value decomposition method (SVD) [27]. Transfering C:.1 to matrix form yields

V'a = a' (C:.2)

where

a,

a-

a(

and

a'

af,,j

119

Moreover, we see that dim{a} = nd x 1 and dim{a'} = md x 1. V' denotes a

md x nd matrix where 2 elements differs from 0 in a given row. In fact, in row k

we have

1 ,i=(ih-1)d+mod(k-1,d)+1

Vk1 { - 1, = (jh -1)d + mod(k- 1,d) + 1

0 , otherwise.

Here we are assuming (h - i)d + 1 < k < hd, h =

However, due to redundancy, we observe that m(d - 1) of the rows and n(d - 1)

of the columns of V' may be removed because of redudancy by defining

iI'

0 ... I ... 0 -1 ... 0 0

V=

0 --- 0 ... 1 ... 0 10

and it is easy to verify that

(V'a) = vlkak] '"L vnkak]

J

120

Now, let Q be an m x k orthogonal matrix, and let P be an n x k orthogonal

matrix where k = Rank{V} < min{m,n}. Furthermore, the columns in Q and

P are solutions to the eigen value problem

VVq = A2q

and

VtVp = A2p

(only vectors accosiated with an eigen value #= 0 are considered). Q and P are

said to consist of the left and right hand singular vectors respectively. It may

now be shown that V can be decomposed as

V = QAP t

where A = diag(Al,..- , Ak) is a diagonal matrix whose elements are the singular

values of V. The generalized inverse V + is now defined as

V + = PA -1 Q' , dim{V +} =n xm,

and moreover, the weight vectors are computed as as

m

ii V,= a, . (C:.3)
1=1

